# app.py import spaces import gradio as gr from gradio import update from functools import lru_cache from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from opencc import OpenCC # 用於簡體轉繁體 from math import gcd from termcolor import cprint # 初始化簡體到繁體轉換器 cc = OpenCC('s2t') tokenizer = None # 可選模型列表 MODEL_LIST = [ "liswei/Taiwan-ELM-270M", "Mxode/SmolLM-Chinese-180M", "flyingfishinwater/chinese-baby-llama2", "unsloth/gemma-3-1b-pt", "ckiplab/gpt2-tiny-chinese", "ckiplab/gpt2-base-chinese", "liswei/Taiwan-ELM-1_1B", "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct", "benchang1110/Taiwan-tinyllama-v1.0-base", "lianghsun/Llama-3.2-Taiwan-3B", "twinkle-ai/Llama-3.2-3B-F1-Instruct", "Epiculous/Violet_Twilight-v0.2", ] def clean_suggestions(suggestions: list[str], max_levels: int) -> list[str]: """ 清洗建议列表: 1. 对每条建议用 tokenizer.tokenize 得到 token 序列。 2. 构建前缀树,将所有 token 序列插入。 3. 遍历前缀树,仅在深度 <= max_levels 且该节点有子节点时,提取对应 token 前缀。 4. 将这些 token 前缀转换回文本并去重,返回列表。 """ # 定义 Trie 节点结构 class TrieNode: __slots__ = ("children", "count") def __init__(self): self.children: dict[str, TrieNode] = {} self.count: int = 0 # 可以记录有多少序列经过此节点(可选) # 构建前缀树 root = TrieNode() token_seqs: list[list[str]] = [] for text in suggestions: # tokenizer.tokenize 可能返回子词 token 列表 try: toks = tokenizer.tokenize(text) except Exception: # 如果 tokenizer 不支持直接 tokenize raw text,可以先用 basic tokenization,如按空白分割 toks = text.split() if not toks: continue token_seqs.append(toks) node = root node.count += 1 for tok in toks: if tok not in node.children: node.children[tok] = TrieNode() node = node.children[tok] node.count += 1 # 遍历 Trie,收集深度 <= max_levels 且有子节点的前缀序列 results_prefix_tokens: set[tuple[str, ...]] = set() def dfs(node: TrieNode, path: list[str], depth: int): # node: 当前 TrieNode; path: 已走过的 token 列表; depth: len(path) if depth > max_levels: return # 如果当前节点有子节点,且 depth>0 (排除根节点本身),则为一个候选前缀 if depth > 0 and node.children: results_prefix_tokens.add(tuple(path)) # 继续往下遍历,直到 depth == max_levels if depth == max_levels: return for tok, child in node.children.items(): path.append(tok) dfs(child, path, depth + 1) path.pop() dfs(root, [], 0) # 将 token 前缀转换回字符串 cleaned: set[str] = set() for tok_prefix in results_prefix_tokens: try: # tokenizer.convert_tokens_to_string 在大多数 tokenizer 支持 text_pref = tokenizer.convert_tokens_to_string(list(tok_prefix)).strip() except Exception: # fallback: 直接拼接 token(可能需要根据 tokenizer 规范加空格或直接连起来) text_pref = "".join(tok_prefix).strip() if text_pref: cleaned.add(text_pref) # 返回去重之后的列表 return list(cleaned) @lru_cache(maxsize=8) def get_pipeline(model_name): global tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) mdl = AutoModelForCausalLM.from_pretrained( model_name, weights_only=False, trust_remote_code=True ) try: mdl.to("cuda") except Exception as e: print(f'Error: {e}') return pipeline("text-generation", model=mdl, tokenizer=tokenizer, device=0) @spaces.GPU def suggest_next(text, model_name, k, m, num_beam_groups, diversity_penalty, max_prefix_levels=2): """ 使用 Diverse Beam Search 產生 m 條候選: - num_beams = m - num_beam_groups, diversity_penalty 可調整多樣性 之後轉繁體、去重、合併共同前綴後回傳。 """ gen_pipe = get_pipeline(model_name) # 構造 generate 參數字典,僅在 penalty>0 時加入 diversity 相關 gen_kwargs = { "max_new_tokens": k, "num_beams": m, "num_return_sequences": m, "do_sample": False, "early_stopping": True, } if diversity_penalty and diversity_penalty > 0: valid_group = max(gcd(m, num_beam_groups),2) gen_kwargs["num_beam_groups"] = valid_group gen_kwargs["diversity_penalty"] = float(diversity_penalty) outs = gen_pipe(text, **gen_kwargs) # 提取純下文、過濾空字串、繁體化、確保 strip 處理 suggestions = set() for out in outs: snippet = out["generated_text"][len(text):].strip() if not snippet: continue converted = cc.convert(snippet).strip() suggestions.add(converted) suggestions = list(suggestions) suggestions = clean_suggestions(suggestions, max_prefix_levels) return update(choices=suggestions, value=None) def append_suggestion(current, choice): if choice is None: return current # 直接插入選中的候選文字 return current + choice # 自訂 CSS:模擬經典中文輸入法候選欄樣式,並優化手機響應與自動高度 custom_css = """ #suggestions-bar { width: 100%; margin-bottom: 8px; } #suggestions-bar .candidate-list { display: flex; gap: 8px; background: #fff; border: 1px solid #999; border-radius: 4px; padding: 6px; overflow-x: auto; white-space: nowrap; } #suggestions-bar .candidate-list label { cursor: pointer; padding: 6px 10px; font-size: 16px; } #suggestions-bar .candidate-list label:hover { background: #f5f5f5; } #suggestions-bar .candidate-list input[type=radio]:checked + label { background: #e6f7ff; border: 1px solid #1890ff; } #input-box textarea { width: 100%; font-size: 16px; padding: 6px; box-sizing: border-box; overflow: hidden; resize: none; } #predict-button { margin-top: 8px; width: 100%; } /* 手機響應式 */ @media only screen and (max-width: 600px) { #suggestions-bar .candidate-list label { padding: 8px; font-size: 18px; } #predict-button { font-size: 18px; } } """ # 自動增高腳本 auto_height_js = """ """ with gr.Blocks(css=custom_css) as demo: gr.HTML(auto_height_js) gr.Markdown( "## 🇹🇼 繁體中文 IME 加速器 \ " "結合小型語言模型與 ZeroGPU,提供即時輸入法風格候選欄。" ) with gr.Column(): suggestions = gr.Radio( [], label="", interactive=True, type="value", elem_id="suggestions-bar", elem_classes="candidate-list" ) input_text = gr.Textbox( label="", placeholder="請輸入拼音或文字…", lines=1, max_lines=20, elem_id="input-box" ) # 永遠顯示預測按鈕 with gr.Row(): auto_predict = gr.Checkbox( value=True, label="自動預測(內容變更時觸發)", elem_id="auto-predict" ) predict_button = gr.Button( "預測", elem_id="predict-button" ) with gr.Accordion("進階設定", open=False): model_selector = gr.Dropdown( MODEL_LIST, value=MODEL_LIST[0], label="模型" ) k_slider = gr.Slider( minimum=1, maximum=50, step=1, value=10, label="K(最大新詞元數)" ) m_slider = gr.Slider( minimum=1, maximum=30, step=1, value=20, label="M(建議數/Beam 數)" ) group_slider = gr.Slider( minimum=1, maximum=30, step=1, value=6, label="Beam 群組數 (num_beam_groups)" ) diversity_penalty_slider = gr.Slider( minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="多樣性懲罰 (diversity_penalty)" ) prefix_levels_slider = gr.Slider( minimum=1, maximum=5, step=1, value=2, label="Clean 前綴深度 (max_levels)" ) # 綁定事件 predict_button.click( fn=suggest_next, inputs=[ input_text, model_selector, k_slider, m_slider, group_slider, diversity_penalty_slider, prefix_levels_slider # 新增 ], outputs=suggestions, ) input_text.change( fn=lambda txt, mdl, k, m, g, d, auto, pl: ( suggest_next(txt, mdl, k, m, g, d, pl) if auto else update(choices=[], value=None) ), inputs=[ input_text, model_selector, k_slider, m_slider, group_slider, diversity_penalty_slider, auto_predict, prefix_levels_slider # 新增 ], outputs=suggestions, ) suggestions.change( fn=append_suggestion, inputs=[input_text, suggestions], outputs=input_text, ) demo.launch()