import spaces import gradio as gr from gradio import update from functools import lru_cache from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from opencc import OpenCC # 用於簡體轉繁體 # 初始化簡體到繁體轉換器 cc = OpenCC('s2t') # 可選模型列表 MODEL_LIST = [ "liswei/Taiwan-ELM-270M", "Mxode/SmolLM-Chinese-180M", "flyingfishinwater/chinese-baby-llama2", "unsloth/gemma-3-1b-pt", "ckiplab/gpt2-tiny-chinese", "ckiplab/gpt2-base-chinese", "liswei/Taiwan-ELM-1_1B", "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct", "benchang1110/Taiwan-tinyllama-v1.0-base", "lianghsun/Llama-3.2-Taiwan-3B", "twinkle-ai/Llama-3.2-3B-F1-Instruct", "Epiculous/Violet_Twilight-v0.2", ] @lru_cache(maxsize=None) def get_pipeline(model_name): tok = AutoTokenizer.from_pretrained(model_name) mdl = AutoModelForCausalLM.from_pretrained( model_name, weights_only=False, trust_remote_code=True ) mdl.to("cuda") return pipeline("text-generation", model=mdl, tokenizer=tok, device=0) @spaces.GPU def suggest_next(text, model_name, k, m): """ 使用 Beam Search 產生 M 條最可能的下段建議,並一次更新候選列表,最後將簡體字轉為繁體字。 """ gen_pipe = get_pipeline(model_name) outs = gen_pipe( text, max_new_tokens=k, num_beams=m, num_return_sequences=m, do_sample=False, early_stopping=True ) # 提取並清理生成內容 suggestions = [out["generated_text"][len(text):].strip() for out in outs] suggestions = [s for s in suggestions if s] # 簡體轉繁體 suggestions = [cc.convert(s) for s in suggestions] return update(choices=suggestions, value=None) def append_suggestion(current, choice): if choice is None: return current # 模擬輸入法候選選中 return current + choice # 自訂 CSS:模擬經典中文輸入法候選欄樣式 custom_css = """ #suggestions-bar .candidate-list { display: flex; gap: 12px; background: #ffffff; border: 1px solid #ccc; border-radius: 4px; padding: 6px; } #suggestions-bar .candidate-list input[type=radio] { display: none; } #suggestions-bar .candidate-list label { cursor: pointer; padding: 2px 6px; border-radius: 4px; } #suggestions-bar .candidate-list label:hover { background: #f0f0f0; } #suggestions-bar .candidate-list input[type=radio]:checked + label { background: #e0e0e0; border: 1px solid #888; } """ with gr.Blocks(css=custom_css) as demo: # 標題和說明 gr.Markdown( "## 🇹🇼 繁體中文輸入法加速器 \n" "結合小型語言模型與 ZeroGPU,即時 IME 風格候選條。" ) # 經典候選欄:水平排列 suggestions = gr.Radio( [], label="", interactive=True, type="value", elem_id="suggestions-bar", elem_classes="candidate-list" ) # 輸入區與按鈕:單行輸入框 + 小按鈕 with gr.Row(): input_text = gr.Textbox( label="", placeholder="請輸入拼音或文字…", lines=1, max_lines=1 ) gpu_button = gr.Button("建議") # 進階參數設定(可折疊) with gr.Accordion("進階設定", open=False): model_selector = gr.Dropdown( MODEL_LIST, value=MODEL_LIST[0], label="模型" ) k_slider = gr.Slider( minimum=1, maximum=50, step=1, value=1, label="K(最大新詞元數)" ) m_slider = gr.Slider( minimum=1, maximum=30, step=1, value=6, label="M(建議數/Beam 數)" ) # 事件綁定 gpu_button.click( fn=suggest_next, inputs=[input_text, model_selector, k_slider, m_slider], outputs=suggestions, ) suggestions.change( fn=append_suggestion, inputs=[input_text, suggestions], outputs=input_text, ) demo.launch()