Spaces:
Sleeping
Sleeping
| import time | |
| import logging | |
| import gradio as gr | |
| import cv2 | |
| import os | |
| from transformers import AutoProcessor, AutoModelForImageTextToText | |
| import torch | |
| from PIL import Image | |
| # Cache for loaded model and processor | |
| default_cache = {'model_id': None, 'processor': None, 'model': None, 'device': None} | |
| model_cache = default_cache.copy() | |
| # Check for XPU availability | |
| has_xpu = hasattr(torch, 'xpu') and torch.xpu.is_available() | |
| def update_model(model_id, device): | |
| if model_cache['model_id'] != model_id or model_cache['device'] != device: | |
| logging.info(f'Loading model {model_id} on {device}') | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| # Load model with appropriate precision for each device | |
| if device == 'cuda': | |
| # Use bfloat16 for CUDA for performance | |
| model = AutoModelForImageTextToText.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.bfloat16, | |
| _attn_implementation='flash_attention_2' | |
| ).to('cuda') | |
| elif device == 'xpu' and has_xpu: | |
| # Use float32 on XPU to avoid bfloat16 layernorm issues | |
| model = AutoModelForImageTextToText.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.float32 | |
| ).to('xpu') | |
| else: | |
| # Default to float32 on CPU | |
| model = AutoModelForImageTextToText.from_pretrained(model_id).to('cpu') | |
| model.eval() | |
| model_cache.update({'model_id': model_id, 'processor': processor, 'model': model, 'device': device}) | |
| def caption_frame(frame, model_id, interval_ms, sys_prompt, usr_prompt, device): | |
| debug_msgs = [] | |
| update_model(model_id, device) | |
| processor = model_cache['processor'] | |
| model = model_cache['model'] | |
| # Control capture interval | |
| time.sleep(interval_ms / 1000) | |
| # Preprocess frame | |
| t0 = time.time() | |
| rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| pil_img = Image.fromarray(rgb) | |
| temp_path = 'frame.jpg' | |
| pil_img.save(temp_path, format='JPEG', quality=50) | |
| debug_msgs.append(f'Preprocess: {int((time.time()-t0)*1000)} ms') | |
| # Prepare multimodal chat messages | |
| messages = [ | |
| {'role': 'system', 'content': [{'type': 'text', 'text': sys_prompt}]}, | |
| {'role': 'user', 'content': [ | |
| {'type': 'image', 'url': temp_path}, | |
| {'type': 'text', 'text': usr_prompt} | |
| ]} | |
| ] | |
| # Tokenize and encode | |
| t1 = time.time() | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors='pt' | |
| ).to(model.device) | |
| debug_msgs.append(f'Tokenize: {int((time.time()-t1)*1000)} ms') | |
| # Inference | |
| t2 = time.time() | |
| outputs = model.generate(**inputs, do_sample=False, max_new_tokens=128) | |
| debug_msgs.append(f'Inference: {int((time.time()-t2)*1000)} ms') | |
| # Decode and strip history | |
| t3 = time.time() | |
| raw = processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
| debug_msgs.append(f'Decode: {int((time.time()-t3)*1000)} ms') | |
| if "Assistant:" in raw: | |
| caption = raw.split("Assistant:")[-1].strip() | |
| else: | |
| lines = raw.splitlines() | |
| caption = lines[-1].strip() if len(lines) > 1 else raw.strip() | |
| return caption, '\n'.join(debug_msgs) | |
| def main(): | |
| logging.basicConfig(level=logging.INFO) | |
| model_choices = [ | |
| 'HuggingFaceTB/SmolVLM2-256M-Video-Instruct', | |
| 'HuggingFaceTB/SmolVLM2-500M-Video-Instruct', | |
| 'HuggingFaceTB/SmolVLM2-2.2B-Instruct' | |
| ] | |
| # Determine available devices | |
| device_options = ['cpu'] | |
| if torch.cuda.is_available(): | |
| device_options.append('cuda') | |
| if has_xpu: | |
| device_options.append('xpu') | |
| default_device = 'cuda' if torch.cuda.is_available() else ('xpu' if has_xpu else 'cpu') | |
| with gr.Blocks() as demo: | |
| gr.Markdown('## 🎥 Real-Time Webcam Captioning with SmolVLM2 (Transformers)') | |
| with gr.Row(): | |
| model_dd = gr.Dropdown(model_choices, value=model_choices[0], label='Model ID') | |
| device_dd = gr.Dropdown(device_options, value=default_device, label='Device') | |
| interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)') | |
| sys_p = gr.Textbox(lines=2, value='Describe the key action', label='System Prompt') | |
| usr_p = gr.Textbox(lines=1, value='What is happening in this image?', label='User Prompt') | |
| cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed') | |
| caption_tb = gr.Textbox(interactive=False, label='Caption') | |
| log_tb = gr.Textbox(lines=4, interactive=False, label='Debug Log') | |
| cam.stream( | |
| fn=caption_frame, | |
| inputs=[cam, model_dd, interval, sys_p, usr_p, device_dd], | |
| outputs=[caption_tb, log_tb], | |
| time_limit=600 | |
| ) | |
| # Enable Gradio's async event queue to register callback IDs and prevent KeyErrors | |
| demo.queue() | |
| # Launch the app | |
| demo.launch() | |
| if __name__ == '__main__': | |
| main() | |