File size: 11,632 Bytes
4a7594f
454a10d
2318eae
 
221a9c5
231cd3a
ab9b679
ab74fc2
 
4a7594f
 
 
 
231cd3a
 
 
454a10d
 
ab74fc2
9fba0a6
 
 
 
 
 
 
 
ab74fc2
 
9fba0a6
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
 
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
 
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
 
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
 
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
 
454a10d
 
 
 
 
 
 
 
 
ab74fc2
 
454a10d
 
 
 
 
 
 
 
 
ab74fc2
 
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
 
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
 
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
 
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
 
454a10d
ab9b679
 
b26d94c
 
 
ab9b679
454a10d
 
 
ab74fc2
 
 
 
 
 
454a10d
 
 
 
 
 
 
 
 
 
 
 
 
 
ab74fc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202cb59
ab74fc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2318eae
454a10d
 
 
 
2318eae
 
 
 
ab74fc2
2318eae
 
7c3f2af
2318eae
2a8a9a5
 
 
7c3f2af
2a8a9a5
 
 
2318eae
 
 
a1d489d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
from pathlib import Path
import numpy as np
import sherpa_onnx
import scipy.signal
from opencc import OpenCC
from huggingface_hub import hf_hub_download
from typing import List
import tempfile

# Ensure Hugging Face cache is in a user-writable directory
CACHE_DIR = Path(__file__).parent / "hf_cache"
os.makedirs(CACHE_DIR, exist_ok=True)

converter = OpenCC('s2t')

# Streaming Zipformer model registry: paths relative to repo root
STREAMING_ZIPFORMER_MODELS = {
    # bilingual zh-en with char+BPE
    "csukuangfj/k2fsa-zipformer-bilingual-zh-en-t": {
        "tokens": "data/lang_char_bpe/tokens.txt",
        "encoder_fp32": "exp/96/encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "exp/96/encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "exp/96/decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "exp/96/decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "exp/96/joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "exp/96/joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"cjkchar+bpe",
        "bpe_vocab":   "data/lang_char_bpe/bpe.vocab",
    },
    # mixed Chinese+English (char+BPE)
    "pfluo/k2fsa-zipformer-chinese-english-mixed": {
        "tokens": "data/lang_char_bpe/tokens.txt",
        "encoder_fp32": "exp/encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "exp/encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "exp/decoder-epoch-99-avg-1.onnx",
        "decoder_int8": None,
        "joiner_fp32": "exp/joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "exp/joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"cjkchar+bpe",
        "bpe_vocab":   "data/lang_char_bpe/bpe.vocab",
    },
    # Korean-only (CJK chars)
    "k2-fsa/sherpa-onnx-streaming-zipformer-korean-2024-06-16": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"cjkchar",
        "bpe_vocab":   None,
    },
    # multi Chinese (Hans) (CJK chars)
    "k2-fsa/sherpa-onnx-streaming-zipformer-multi-zh-hans-2023-12-12": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-20-avg-1-chunk-16-left-128.onnx",
        "encoder_int8": "encoder-epoch-20-avg-1-chunk-16-left-128.int8.onnx",
        "decoder_fp32": "decoder-epoch-20-avg-1-chunk-16-left-128.onnx",
        "decoder_int8": "decoder-epoch-20-avg-1-chunk-16-left-128.int8.onnx",
        "joiner_fp32": "joiner-epoch-20-avg-1-chunk-16-left-128.onnx",
        "joiner_int8": "joiner-epoch-20-avg-1-chunk-16-left-128.int8.onnx",
        "modeling_unit":"cjkchar",
        "bpe_vocab":   None,
    },
    # wenetspeech streaming (CJK chars)
    "pkufool/icefall-asr-zipformer-streaming-wenetspeech-20230615": {
        "tokens": "data/lang_char/tokens.txt",
        "encoder_fp32": "exp/encoder-epoch-12-avg-4-chunk-16-left-128.onnx",
        "encoder_int8": "exp/encoder-epoch-12-avg-4-chunk-16-left-128.int8.onnx",
        "decoder_fp32": "exp/decoder-epoch-12-avg-4-chunk-16-left-128.onnx",
        "decoder_int8": "exp/decoder-epoch-12-avg-4-chunk-16-left-128.int8.onnx",
        "joiner_fp32": "exp/joiner-epoch-12-avg-4-chunk-16-left-128.onnx",
        "joiner_int8": "exp/joiner-epoch-12-avg-4-chunk-16-left-128.int8.onnx",
        "modeling_unit":"cjkchar",
        "bpe_vocab":   None,
    },
    # English-only (BPE)
    "csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-06-26": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1-chunk-16-left-128.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1-chunk-16-left-128.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1-chunk-16-left-128.onnx",
        "decoder_int8": None,
        "joiner_fp32": "joiner-epoch-99-avg-1-chunk-16-left-128.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1-chunk-16-left-128.int8.onnx",
        "modeling_unit":"bpe",
        "bpe_vocab":   None,
    },
    "csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-06-21": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"bpe",
        "bpe_vocab":   None,
    },
    "csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-02-21": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"bpe",
        "bpe_vocab":   None,
    },
    # older bilingual zh-en (cjkchar+BPE) – no bpe.vocab shipped
    "csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"cjkchar+bpe",
        "bpe_vocab":   None,
    },
    # French-only (BPE)
    "shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-29-avg-9-with-averaged-model.onnx",
        "encoder_int8": "encoder-epoch-29-avg-9-with-averaged-model.int8.onnx",
        "decoder_fp32": "decoder-epoch-29-avg-9-with-averaged-model.onnx",
        "decoder_int8": "decoder-epoch-29-avg-9-with-averaged-model.int8.onnx",
        "joiner_fp32": "joiner-epoch-29-avg-9-with-averaged-model.onnx",
        "joiner_int8": "joiner-epoch-29-avg-9-with-averaged-model.int8.onnx",
        "modeling_unit":"bpe",
        "bpe_vocab":   None,
    },
    # Chinese-only small (CJK chars)
    "csukuangfj/sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"cjkchar",
        "bpe_vocab":   None,
    },
    # English-only 20M (BPE)
    "csukuangfj/sherpa-onnx-streaming-zipformer-en-20M-2023-02-17": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"bpe",
        "bpe_vocab":   None,
    },
}

# Audio resampling utility
def resample_audio(audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
    return scipy.signal.resample_poly(audio, target_sr, orig_sr)

# Create an online recognizer for a given model and precision
# model_id: full HF repo ID
# precision: "int8" or "fp32"
def create_recognizer(
    model_id: str,
    precision: str,
    hotwords: List[str] = None,
    hotwords_score: float = 0.0,
):
    if model_id not in STREAMING_ZIPFORMER_MODELS:
        raise ValueError(f"Model '{model_id}' is not registered.")
    entry = STREAMING_ZIPFORMER_MODELS[model_id]

    tokens_file = entry['tokens']
    encoder_file = entry['encoder_int8'] if precision == 'int8' else entry['encoder_fp32']
    decoder_file = entry['decoder_fp32']
    joiner_file = entry['joiner_int8'] if precision == 'int8' else entry['joiner_fp32']

    tokens_path = hf_hub_download(repo_id=model_id, filename=tokens_file, cache_dir=str(CACHE_DIR))
    encoder_path = hf_hub_download(repo_id=model_id, filename=encoder_file, cache_dir=str(CACHE_DIR))
    decoder_path = hf_hub_download(repo_id=model_id, filename=decoder_file, cache_dir=str(CACHE_DIR))
    joiner_path = hf_hub_download(repo_id=model_id, filename=joiner_file, cache_dir=str(CACHE_DIR))

    # β€”β€”β€” Download BPE vocab if this model has one β€”β€”β€”
    modeling_unit = entry.get("modeling_unit")
    bpe_rel_path  = entry.get("bpe_vocab")
    bpe_vocab_path = None
    if bpe_rel_path:
        try:
            bpe_vocab_path = hf_hub_download(
                repo_id=model_id,
                filename=bpe_rel_path,
                cache_dir=str(CACHE_DIR),
            )
            print(f"[DEBUG asr_worker] Downloaded bpe_vocab: {bpe_vocab_path}")
        except Exception as e:
            print(f"[WARNING asr_worker] Could not download bpe_vocab '{bpe_rel_path}': {e}")
            bpe_vocab_path = None

    # β€”β€”β€” Decide whether to use beam search with hotword biasing β€”β€”β€”
    use_beam = (hotwords and hotwords_score > 0.0) and bpe_vocab_path
    if use_beam:
            # Write hotword list to a temp file (one entry per line)
            tf = tempfile.NamedTemporaryFile(
                mode="w", delete=False, suffix=".txt", dir=str(CACHE_DIR)
            )
            for w in hotwords:
                tf.write(f"{w}\n")
            tf.flush()
            tf.close()
            hotwords_file_path = tf.name
            print(f"[DEBUG asr_worker] Written {len(hotwords)} hotwords to {hotwords_file_path} with score {hotwords_score}")

            # Create beam-search recognizer with biasing :contentReference[oaicite:0]{index=0}
            return sherpa_onnx.OnlineRecognizer.from_transducer(
                tokens=tokens_path,
                encoder=encoder_path,
                decoder=decoder_path,
                joiner=joiner_path,
                provider="cpu",
                num_threads=1,
                sample_rate=16000,
                feature_dim=80,
                decoding_method="modified_beam_search",
                hotwords_file=hotwords_file_path,
                hotwords_score=hotwords_score,
                modeling_unit=modeling_unit,
                bpe_vocab=bpe_vocab_path,
            )

    # β€”β€”β€” Fallback to original greedy-search (no hotword biasing) β€”β€”β€”
    return sherpa_onnx.OnlineRecognizer.from_transducer(
        tokens=tokens_path,
        encoder=encoder_path,
        decoder=decoder_path,
        joiner=joiner_path,
        provider="cpu",
        num_threads=1,
        sample_rate=16000,
        feature_dim=80,
        decoding_method="greedy_search",
    )

def stream_audio(raw_pcm_bytes, stream, recognizer, orig_sr):
    audio = np.frombuffer(raw_pcm_bytes, dtype=np.float32)
    if audio.size == 0:
        return "", 0.0

    resampled = resample_audio(audio, orig_sr, 16000)
    rms = float(np.sqrt(np.mean(resampled ** 2)))

    stream.accept_waveform(16000, resampled)
    if recognizer.is_ready(stream):
        recognizer.decode_streams([stream])
    result = recognizer.get_result(stream)
    return converter.convert(result), rms