Spaces:
Running
Running
File size: 8,580 Bytes
4a7594f 454a10d 2318eae 221a9c5 231cd3a ab9b679 4a7594f 231cd3a 454a10d 2632b6f 454a10d ab9b679 b26d94c ab9b679 454a10d 2318eae 454a10d 2318eae 7c3f2af 2318eae 2a8a9a5 7c3f2af 2a8a9a5 2318eae 231cd3a 2318eae 231cd3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os
from pathlib import Path
import numpy as np
import sherpa_onnx
import scipy.signal
from opencc import OpenCC
from huggingface_hub import hf_hub_download
# Ensure Hugging Face cache is in a user-writable directory
CACHE_DIR = Path(__file__).parent / "hf_cache"
os.makedirs(CACHE_DIR, exist_ok=True)
converter = OpenCC('s2t')
# Streaming Zipformer model registry: paths relative to repo root
STREAMING_ZIPFORMER_MODELS = {
"pfluo/k2fsa-zipformer-chinese-english-mixed": {
"tokens": "data/lang_char_bpe/tokens.txt",
"encoder_fp32": "exp/encoder-epoch-99-avg-1.onnx",
"encoder_int8": "exp/encoder-epoch-99-avg-1.int8.onnx",
"decoder_fp32": "exp/decoder-epoch-99-avg-1.onnx",
"decoder_int8": None,
"joiner_fp32": "exp/joiner-epoch-99-avg-1.onnx",
"joiner_int8": "exp/joiner-epoch-99-avg-1.int8.onnx",
},
"k2-fsa/sherpa-onnx-streaming-zipformer-korean-2024-06-16": {
"tokens": "tokens.txt",
"encoder_fp32": "encoder-epoch-99-avg-1.onnx",
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
"decoder_fp32": "decoder-epoch-99-avg-1.onnx",
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
"joiner_fp32": "joiner-epoch-99-avg-1.onnx",
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
},
"k2-fsa/sherpa-onnx-streaming-zipformer-multi-zh-hans-2023-12-12": {
"tokens": "tokens.txt",
"encoder_fp32": "encoder-epoch-20-avg-1-chunk-16-left-128.onnx",
"encoder_int8": "encoder-epoch-20-avg-1-chunk-16-left-128.int8.onnx",
"decoder_fp32": "decoder-epoch-20-avg-1-chunk-16-left-128.onnx",
"decoder_int8": "decoder-epoch-20-avg-1-chunk-16-left-128.int8.onnx",
"joiner_fp32": "joiner-epoch-20-avg-1-chunk-16-left-128.onnx",
"joiner_int8": "joiner-epoch-20-avg-1-chunk-16-left-128.int8.onnx",
},
"pkufool/icefall-asr-zipformer-streaming-wenetspeech-20230615": {
"tokens": "data/lang_char/tokens.txt",
"encoder_fp32": "exp/encoder-epoch-12-avg-4-chunk-16-left-128.onnx",
"encoder_int8": "exp/encoder-epoch-12-avg-4-chunk-16-left-128.int8.onnx",
"decoder_fp32": "exp/decoder-epoch-12-avg-4-chunk-16-left-128.onnx",
"decoder_int8": "exp/decoder-epoch-12-avg-4-chunk-16-left-128.int8.onnx",
"joiner_fp32": "exp/joiner-epoch-12-avg-4-chunk-16-left-128.onnx",
"joiner_int8": "exp/joiner-epoch-12-avg-4-chunk-16-left-128.int8.onnx",
},
"csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-06-26": {
"tokens": "tokens.txt",
"encoder_fp32": "encoder-epoch-99-avg-1-chunk-16-left-128.onnx",
"encoder_int8": "encoder-epoch-99-avg-1-chunk-16-left-128.int8.onnx",
"decoder_fp32": "decoder-epoch-99-avg-1-chunk-16-left-128.onnx",
"decoder_int8": None,
"joiner_fp32": "joiner-epoch-99-avg-1-chunk-16-left-128.onnx",
"joiner_int8": "joiner-epoch-99-avg-1-chunk-16-left-128.int8.onnx",
},
"csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-06-21": {
"tokens": "tokens.txt",
"encoder_fp32": "encoder-epoch-99-avg-1.onnx",
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
"decoder_fp32": "decoder-epoch-99-avg-1.onnx",
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
"joiner_fp32": "joiner-epoch-99-avg-1.onnx",
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
},
"csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-02-21": {
"tokens": "tokens.txt",
"encoder_fp32": "encoder-epoch-99-avg-1.onnx",
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
"decoder_fp32": "decoder-epoch-99-avg-1.onnx",
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
"joiner_fp32": "joiner-epoch-99-avg-1.onnx",
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
},
"csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20": {
"tokens": "tokens.txt",
"encoder_fp32": "encoder-epoch-99-avg-1.onnx",
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
"decoder_fp32": "decoder-epoch-99-avg-1.onnx",
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
"joiner_fp32": "joiner-epoch-99-avg-1.onnx",
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
},
"shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14": {
"tokens": "tokens.txt",
"encoder_fp32": "encoder-epoch-29-avg-9-with-averaged-model.onnx",
"encoder_int8": "encoder-epoch-29-avg-9-with-averaged-model.int8.onnx",
"decoder_fp32": "decoder-epoch-29-avg-9-with-averaged-model.onnx",
"decoder_int8": "decoder-epoch-29-avg-9-with-averaged-model.int8.onnx",
"joiner_fp32": "joiner-epoch-29-avg-9-with-averaged-model.onnx",
"joiner_int8": "joiner-epoch-29-avg-9-with-averaged-model.int8.onnx",
},
"csukuangfj/sherpa-onnx-streaming-zipformer-small-bilingual-zh-en-2023-02-16": {
"tokens": "tokens.txt",
"encoder_fp32": "encoder-epoch-99-avg-1.onnx",
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
"decoder_fp32": "decoder-epoch-99-avg-1.onnx",
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
"joiner_fp32": "joiner-epoch-99-avg-1.onnx",
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
},
"csukuangfj/sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23": {
"tokens": "tokens.txt",
"encoder_fp32": "encoder-epoch-99-avg-1.onnx",
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
"decoder_fp32": "decoder-epoch-99-avg-1.onnx",
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
"joiner_fp32": "joiner-epoch-99-avg-1.onnx",
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
},
"csukuangfj/sherpa-onnx-streaming-zipformer-en-20M-2023-02-17": {
"tokens": "tokens.txt",
"encoder_fp32": "encoder-epoch-99-avg-1.onnx",
"encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
"decoder_fp32": "decoder-epoch-99-avg-1.onnx",
"decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
"joiner_fp32": "joiner-epoch-99-avg-1.onnx",
"joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
},
}
# Audio resampling utility
def resample_audio(audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
return scipy.signal.resample_poly(audio, target_sr, orig_sr)
# Create an online recognizer for a given model and precision
# model_id: full HF repo ID
# precision: "int8" or "fp32"
def create_recognizer(model_id: str, precision: str):
if model_id not in STREAMING_ZIPFORMER_MODELS:
raise ValueError(f"Model '{model_id}' is not registered.")
entry = STREAMING_ZIPFORMER_MODELS[model_id]
tokens_file = entry['tokens']
encoder_file = entry['encoder_int8'] if precision == 'int8' else entry['encoder_fp32']
decoder_file = entry['decoder_fp32']
joiner_file = entry['joiner_int8'] if precision == 'int8' else entry['joiner_fp32']
tokens_path = hf_hub_download(repo_id=model_id, filename=tokens_file, cache_dir=str(CACHE_DIR))
encoder_path = hf_hub_download(repo_id=model_id, filename=encoder_file, cache_dir=str(CACHE_DIR))
decoder_path = hf_hub_download(repo_id=model_id, filename=decoder_file, cache_dir=str(CACHE_DIR))
joiner_path = hf_hub_download(repo_id=model_id, filename=joiner_file, cache_dir=str(CACHE_DIR))
return sherpa_onnx.OnlineRecognizer.from_transducer(
tokens=tokens_path,
encoder=encoder_path,
decoder=decoder_path,
joiner=joiner_path,
provider="cpu",
num_threads=1,
sample_rate=16000,
feature_dim=80,
decoding_method="greedy_search"
)
def stream_audio(raw_pcm_bytes, stream, recognizer, orig_sr):
audio = np.frombuffer(raw_pcm_bytes, dtype=np.float32)
if audio.size == 0:
return "", 0.0
resampled = resample_audio(audio, orig_sr, 16000)
rms = float(np.sqrt(np.mean(resampled ** 2)))
stream.accept_waveform(16000, resampled)
if recognizer.is_ready(stream):
recognizer.decode_streams([stream])
result = recognizer.get_result(stream)
return converter.convert(result), rms
def finalize_stream(stream, recognizer):
tail = np.zeros(int(0.66 * 16000), dtype=np.float32)
stream.accept_waveform(16000, tail)
stream.input_finished()
while recognizer.is_ready(stream):
recognizer.decode_streams([stream])
result = recognizer.get_result(stream)
return converter.convert(result)
|