File size: 16,325 Bytes
4a7594f
454a10d
2318eae
 
221a9c5
231cd3a
ab9b679
ab74fc2
 
3ed4a9b
4a7594f
 
 
 
231cd3a
c335e79
 
231cd3a
454a10d
 
70a816c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6f5dad
 
 
70a816c
 
a6f5dad
 
70a816c
 
a6f5dad
 
 
 
 
 
70a816c
 
a6f5dad
 
70a816c
 
a6f5dad
 
 
ab74fc2
9fba0a6
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
9fba0a6
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
454a10d
 
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
454a10d
 
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
454a10d
ab74fc2
454a10d
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
454a10d
ca1c0dd
 
 
 
 
 
 
 
 
 
 
ab9b679
 
b26d94c
 
 
ab9b679
a6f5dad
 
ac441da
 
f95c465
ac441da
 
 
 
 
 
 
a6f5dad
ac441da
a6f5dad
ac441da
a6f5dad
ac441da
 
6ffa7d7
454a10d
 
 
ab74fc2
 
 
 
 
548b7ed
 
 
ab74fc2
454a10d
 
 
 
 
a6f5dad
 
 
454a10d
 
 
 
 
 
3ed4a9b
ab74fc2
3ed4a9b
ab74fc2
3ed4a9b
ab74fc2
3ed4a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab74fc2
3ed4a9b
ab74fc2
 
3ed4a9b
 
 
 
ab74fc2
 
 
 
 
 
6c8af7a
 
c335e79
6c8af7a
 
1da82c9
 
 
 
ab74fc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
548b7ed
 
 
 
 
ab74fc2
 
 
2318eae
454a10d
 
 
 
2318eae
 
 
 
ab74fc2
548b7ed
 
 
 
 
2318eae
 
7c3f2af
2318eae
2a8a9a5
 
 
7c3f2af
2a8a9a5
 
 
2318eae
 
 
c335e79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import os
from pathlib import Path
import numpy as np
import sherpa_onnx
import scipy.signal
from opencc import OpenCC
from huggingface_hub import hf_hub_download
from typing import List
import tempfile
from sentencepiece import SentencePieceProcessor

# Ensure Hugging Face cache is in a user-writable directory
CACHE_DIR = Path(__file__).parent / "hf_cache"
os.makedirs(CACHE_DIR, exist_ok=True)

to_ZHTW = OpenCC('s2t')
to_ZHCN = OpenCC('t2s')

# Streaming Zipformer model registry: paths relative to repo root
STREAMING_ZIPFORMER_MODELS = {
    # csukuangfj/sherpa-onnx-streaming-zipformer-zh-fp16-2025-06-30
    "csukuangfj/sherpa-onnx-streaming-zipformer-zh-fp16-2025-06-30": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder.fp16.onnx",
        "encoder_int8": None,
        "decoder_fp32": "decoder.fp16.onnx",
        "decoder_int8": None,
        "joiner_fp32": "joiner.fp16.onnx",
        "joiner_int8": None,
        "modeling_unit":"cjkchar",
        "bpe_model":   None,
    },
    # csukuangfj/sherpa-onnx-streaming-zipformer-zh-xlarge-f16-2025-06-30
    "csukuangfj/sherpa-onnx-streaming-zipformer-zh-xlarge-fp16-2025-06-30": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder.fp16.onnx",
        "encoder_int8": None,
        "decoder_fp32": "decoder.fp16.onnx",
        "decoder_int8": None,
        "joiner_fp32": "joiner.fp16.onnx",
        "joiner_int8": None,
        "modeling_unit":"cjkchar+bpe",
        "bpe_model":   "bpe.model",
    },
    # csukuangfj/sherpa-onnx-streaming-zipformer-zh-int8-2025-06-30
    "csukuangfj/sherpa-onnx-streaming-zipformer-zh-int8-2025-06-30": {
        "tokens": "tokens.txt",
        "encoder_fp32": None,
        "encoder_int8": "encoder.int8.onnx",
        "decoder_fp32": "decoder.onnx",
        "decoder_int8": None,
        "joiner_fp32": None,
        "joiner_int8": "joiner.int8.onnx",
        "modeling_unit":"cjkchar",
        "bpe_model":   None,
    },
    # csukuangfj/sherpa-onnx-streaming-zipformer-zh-xlarge-int8-2025-06-30
    "csukuangfj/sherpa-onnx-streaming-zipformer-zh-xlarge-int8-2025-06-30": {
        "tokens": "tokens.txt",
        "encoder_fp32": None,
        "encoder_int8": "encoder.int8.onnx",
        "decoder_fp32": "decoder.onnx",
        "decoder_int8": None,
        "joiner_fp32": None,
        "joiner_int8": "joiner.int8.onnx",
        "modeling_unit":"cjkchar+bpe",
        "bpe_model":   "bpe.model",
    },
    # bilingual zh-en with char+BPE
    "csukuangfj/k2fsa-zipformer-bilingual-zh-en-t": {
        "tokens": "data/lang_char_bpe/tokens.txt",
        "encoder_fp32": "exp/96/encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "exp/96/encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "exp/96/decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "exp/96/decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "exp/96/joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "exp/96/joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"cjkchar+bpe",
        "bpe_model":   "data/lang_char_bpe/bpe.model",
    },
    # mixed Chinese+English (char+BPE)
    "pfluo/k2fsa-zipformer-chinese-english-mixed": {
        "tokens": "data/lang_char_bpe/tokens.txt",
        "encoder_fp32": "exp/encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "exp/encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "exp/decoder-epoch-99-avg-1.onnx",
        "decoder_int8": None,
        "joiner_fp32": "exp/joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "exp/joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"cjkchar+bpe",
        "bpe_model":   "data/lang_char_bpe/bpe.model",
    },
    # Korean-only (CJK chars)
    "k2-fsa/sherpa-onnx-streaming-zipformer-korean-2024-06-16": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"cjkchar",
        "bpe_model":   "bpe.model",
    },
    # multi Chinese (Hans) (CJK chars)
    "k2-fsa/sherpa-onnx-streaming-zipformer-multi-zh-hans-2023-12-12": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-20-avg-1-chunk-16-left-128.onnx",
        "encoder_int8": "encoder-epoch-20-avg-1-chunk-16-left-128.int8.onnx",
        "decoder_fp32": "decoder-epoch-20-avg-1-chunk-16-left-128.onnx",
        "decoder_int8": "decoder-epoch-20-avg-1-chunk-16-left-128.int8.onnx",
        "joiner_fp32": "joiner-epoch-20-avg-1-chunk-16-left-128.onnx",
        "joiner_int8": "joiner-epoch-20-avg-1-chunk-16-left-128.int8.onnx",
        "modeling_unit":"cjkchar",
        "bpe_model":   "bpe.model",
    },
    # wenetspeech streaming (CJK chars)
    "pkufool/icefall-asr-zipformer-streaming-wenetspeech-20230615": {
        "tokens": "data/lang_char/tokens.txt",
        "encoder_fp32": "exp/encoder-epoch-12-avg-4-chunk-16-left-128.onnx",
        "encoder_int8": "exp/encoder-epoch-12-avg-4-chunk-16-left-128.int8.onnx",
        "decoder_fp32": "exp/decoder-epoch-12-avg-4-chunk-16-left-128.onnx",
        "decoder_int8": "exp/decoder-epoch-12-avg-4-chunk-16-left-128.int8.onnx",
        "joiner_fp32": "exp/joiner-epoch-12-avg-4-chunk-16-left-128.onnx",
        "joiner_int8": "exp/joiner-epoch-12-avg-4-chunk-16-left-128.int8.onnx",
        "modeling_unit":"cjkchar",
        "bpe_model":   None,
    },
    # English-only (BPE)
    "csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-06-26": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1-chunk-16-left-128.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1-chunk-16-left-128.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1-chunk-16-left-128.onnx",
        "decoder_int8": None,
        "joiner_fp32": "joiner-epoch-99-avg-1-chunk-16-left-128.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1-chunk-16-left-128.int8.onnx",
        "modeling_unit":"bpe",
        "bpe_model":   "bpe.model",
    },
    "csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-06-21": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"bpe",
        "bpe_model":   None,
    },
    "csukuangfj/sherpa-onnx-streaming-zipformer-en-2023-02-21": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"bpe",
        "bpe_model":   None,
    },
    # older bilingual zh-en (cjkchar+BPE) – no bpe.vocab shipped
    "csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"cjkchar+bpe",
        "bpe_model":   "bpe.model",
    },
    # French-only (BPE)
    "shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-29-avg-9-with-averaged-model.onnx",
        "encoder_int8": "encoder-epoch-29-avg-9-with-averaged-model.int8.onnx",
        "decoder_fp32": "decoder-epoch-29-avg-9-with-averaged-model.onnx",
        "decoder_int8": "decoder-epoch-29-avg-9-with-averaged-model.int8.onnx",
        "joiner_fp32": "joiner-epoch-29-avg-9-with-averaged-model.onnx",
        "joiner_int8": "joiner-epoch-29-avg-9-with-averaged-model.int8.onnx",
        "modeling_unit":"bpe",
        "bpe_model":   None,
    },
    # Chinese-only small (CJK chars)
    "csukuangfj/sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"cjkchar",
        "bpe_model":   None,
    },
    # English-only 20M (BPE)
    "csukuangfj/sherpa-onnx-streaming-zipformer-en-20M-2023-02-17": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-99-avg-1.onnx",
        "encoder_int8": "encoder-epoch-99-avg-1.int8.onnx",
        "decoder_fp32": "decoder-epoch-99-avg-1.onnx",
        "decoder_int8": "decoder-epoch-99-avg-1.int8.onnx",
        "joiner_fp32": "joiner-epoch-99-avg-1.onnx",
        "joiner_int8": "joiner-epoch-99-avg-1.int8.onnx",
        "modeling_unit":"bpe",
        "bpe_model":   None,
    },
    "csukuangfj/sherpa-onnx-streaming-zipformer-ar_en_id_ja_ru_th_vi_zh-2025-02-10": {
        "tokens": "tokens.txt",
        "encoder_fp32": "encoder-epoch-75-avg-11-chunk-16-left-128.int8.onnx",
        "encoder_int8": None,
        "decoder_fp32": "decoder-epoch-75-avg-11-chunk-16-left-128.onnx",
        "decoder_int8": None,
        "joiner_fp32": "joiner-epoch-75-avg-11-chunk-16-left-128.int8.onnx",
        "joiner_int8": None,
        "modeling_unit":"cjkchar+bpe",
        "bpe_model":   "bpe.model",
    },
}

# Audio resampling utility
def resample_audio(audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
    return scipy.signal.resample_poly(audio, target_sr, orig_sr)

def choose_file(entry: dict, component: str, precision: str) -> str | None:
    """
    Pick the best file for the given component ('encoder', 'decoder', or 'joiner')
    without checking whether the path exists (e.g. before downloading).

    1) Look up the two candidates.
    2) If exactly one is present (non-None), return it.
    3) Otherwise, if precision=='int8' and that candidate exists, return int8.
       Else return fp32.
    """
    e8  = entry.get(f'{component}_int8')
    e32 = entry.get(f'{component}_fp32')

    # 1) If exactly one is present, pick it
    if (e8 is None) != (e32 is None):
        return e8 or e32

    # 2) Otherwise, fallback to β€œint8 if requested & available, else fp32”
    return e8 if precision == 'int8' and e8 else e32
    
# Create an online recognizer for a given model and precision
# model_id: full HF repo ID
# precision: "int8" or "fp32"
def create_recognizer(
    model_id: str,
    precision: str,
    hotwords: List[str] = None,
    hotwords_score: float = 0.0,
    ep_rule1: float = 2.4,
    ep_rule2: float = 1.2,
    ep_rule3: int   = 300,
):
    if model_id not in STREAMING_ZIPFORMER_MODELS:
        raise ValueError(f"Model '{model_id}' is not registered.")
    entry = STREAMING_ZIPFORMER_MODELS[model_id]

    tokens_file = entry['tokens']
    encoder_file = choose_file(entry, 'encoder', precision)
    decoder_file = choose_file(entry, 'decoder', precision)
    joiner_file  = choose_file(entry, 'joiner',  precision)

    tokens_path = hf_hub_download(repo_id=model_id, filename=tokens_file, cache_dir=str(CACHE_DIR))
    encoder_path = hf_hub_download(repo_id=model_id, filename=encoder_file, cache_dir=str(CACHE_DIR))
    decoder_path = hf_hub_download(repo_id=model_id, filename=decoder_file, cache_dir=str(CACHE_DIR))
    joiner_path = hf_hub_download(repo_id=model_id, filename=joiner_file, cache_dir=str(CACHE_DIR))

    # Prepare BPE vocab from .model if provided
    modeling_unit = entry.get("modeling_unit")
    bpe_model_rel  = entry.get("bpe_model")
    bpe_vocab_path = None
    if bpe_model_rel:
        try:
            bpe_model_path = hf_hub_download(model_id, bpe_model_rel, cache_dir=str(CACHE_DIR))
            print(f"[DEBUG] Downloaded bpe model: {bpe_model_path}")

            # === export_bpe_vocab.py logic starts here ===
            sp = SentencePieceProcessor()
            sp.Load(str(bpe_model_path))

            vocab_file = Path(CACHE_DIR) / f"{Path(bpe_model_rel).stem}.vocab"
            with open(vocab_file, "w", encoding="utf-8") as vf:
                for idx in range(sp.get_piece_size()):
                    piece = sp.id_to_piece(idx)
                    score = sp.get_score(idx)
                    vf.write(f"{piece}\t{score}\n")
            bpe_vocab_path = str(vocab_file)
            print(f"[DEBUG] Converted bpe model to vocab: {bpe_vocab_path}")
            # === export_bpe_vocab.py logic ends here ===

        except Exception as e:
            print(f"[WARNING] Failed to build BPE vocab from '{bpe_model_rel}': {e}")
            bpe_vocab_path = None

    # Decide if we should use beam-search hotword biasing
    has_hot = bool(hotwords and hotwords_score > 0.0)
    use_beam = has_hot and ("bpe" not in modeling_unit or bpe_vocab_path is not None)

    if use_beam:
            # Write hotword list to a temp file (one entry per line)
            tf = tempfile.NamedTemporaryFile(
                mode="w", delete=False, suffix=".txt", dir=str(CACHE_DIR)
            )
            for w in hotwords:
                # Remove backslashes and angle-bracket tokens
                clean = w.replace("\\", "").replace("<unk>", "").strip()
                clean = to_ZHCN.convert(clean) # convert all hotword into zh-cn for zh-cn models
                if clean:  # only write non-empty lines
                    tf.write(f"{clean}\n")
            tf.flush()
            tf.close()
            hotwords_file_path = tf.name
            print(f"[DEBUG asr_worker] Written {len(hotwords)} hotwords to {hotwords_file_path} with score {hotwords_score}")

            # Create beam-search recognizer with biasing :contentReference[oaicite:0]{index=0}
            return sherpa_onnx.OnlineRecognizer.from_transducer(
                tokens=tokens_path,
                encoder=encoder_path,
                decoder=decoder_path,
                joiner=joiner_path,
                provider="cpu",
                num_threads=1,
                sample_rate=16000,
                feature_dim=80,
                decoding_method="modified_beam_search",
                hotwords_file=hotwords_file_path,
                hotwords_score=hotwords_score,
                modeling_unit=modeling_unit,
                bpe_vocab=bpe_vocab_path,
                # endpoint detection parameters
                enable_endpoint_detection=True,
                rule1_min_trailing_silence=ep_rule1,
                rule2_min_trailing_silence=ep_rule2,
                rule3_min_utterance_length=ep_rule3,
            )

    # β€”β€”β€” Fallback to original greedy-search (no hotword biasing) β€”β€”β€”
    return sherpa_onnx.OnlineRecognizer.from_transducer(
        tokens=tokens_path,
        encoder=encoder_path,
        decoder=decoder_path,
        joiner=joiner_path,
        provider="cpu",
        num_threads=1,
        sample_rate=16000,
        feature_dim=80,
        decoding_method="greedy_search",
        # endpoint detection parameters
        enable_endpoint_detection=True,
        rule1_min_trailing_silence=ep_rule1,
        rule2_min_trailing_silence=ep_rule2,
        rule3_min_utterance_length=ep_rule3,
    )

def stream_audio(raw_pcm_bytes, stream, recognizer, orig_sr):
    audio = np.frombuffer(raw_pcm_bytes, dtype=np.float32)
    if audio.size == 0:
        return "", 0.0

    resampled = resample_audio(audio, orig_sr, 16000)
    rms = float(np.sqrt(np.mean(resampled ** 2)))

    stream.accept_waveform(16000, resampled)
    if recognizer.is_ready(stream):
        recognizer.decode_streams([stream])
    result = recognizer.get_result(stream)
    return to_ZHTW.convert(result), rms