Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,132 Bytes
ef51ddd a8b6e59 7833553 ef51ddd a8b6e59 2211110 7833553 1b8a47d ef51ddd 019d245 a8b6e59 2211110 ef51ddd a8b6e59 0d09f4a 2211110 0d09f4a a8b6e59 1b8a47d a8b6e59 ef51ddd a8b6e59 ef51ddd c5bcdb3 ef51ddd 1b8a47d ef51ddd 9e56b98 019d245 7833553 9e56b98 b91fc6b 7c3ad3d 264de1a 7c3ad3d 264de1a 7c3ad3d 264de1a 7c3ad3d 1b8a47d 9e56b98 019d245 2211110 021306c a3571c2 019d245 9b896b6 019d245 a3571c2 019d245 021306c 7833553 c5bcdb3 d0509e1 1b8a47d d0509e1 ac0d0ca 2d01cbb 7833553 9e56b98 4199235 2211110 2d01cbb f8ba113 2211110 2d01cbb 2211110 9e56b98 4199235 021306c 4199235 2211110 4199235 2211110 4199235 264de1a 9e56b98 2211110 021306c a3571c2 641e003 2d01cbb 2211110 c9a0c53 9e56b98 7833553 c5bcdb3 7833553 c5bcdb3 021306c 7833553 2211110 7833553 2211110 c5bcdb3 264de1a 9e56b98 2211110 021306c f737f82 2d01cbb 4199235 2d01cbb 9e56b98 4199235 9e56b98 021306c 9e56b98 021306c 9e56b98 021306c 264de1a 9e56b98 021306c 4199235 021306c a3571c2 641e003 9e56b98 021306c 9e56b98 021306c 9e56b98 021306c 264de1a 9e56b98 021306c a8b6e59 021306c a8b6e59 9e56b98 4199235 9e56b98 a3571c2 ef51ddd 38ee90c 021306c 9e56b98 a3571c2 9e56b98 2feb059 9e56b98 2feb059 9e56b98 5ace2c9 2d01cbb 5ace2c9 9e56b98 1b8a47d 021306c 38ee90c 9e56b98 021306c 2d01cbb 9e56b98 5ace2c9 9e56b98 1b8a47d 021306c 38ee90c 9e56b98 021306c c5bcdb3 9e56b98 a8b6e59 021306c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import os
import re
import tempfile
import torch
import gradio as gr
from faster_whisper import WhisperModel
from pydub import AudioSegment
from pyannote.audio import Pipeline as DiarizationPipeline
import opencc
import spaces # zeroGPU support
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
from termcolor import cprint
# —————— Model Lists ——————
WHISPER_MODELS = [
"guillaumekln/faster-whisper-tiny",
"Systran/faster-whisper-large-v3",
"deepdml/faster-whisper-large-v3-turbo-ct2",
"XA9/Belle-faster-whisper-large-v3-zh-punct",
"asadfgglie/faster-whisper-large-v3-zh-TW",
"guillaumekln/faster-whisper-medium",
"guillaumekln/faster-whisper-small",
"guillaumekln/faster-whisper-base",
]
SENSEVOICE_MODELS = [
"FunAudioLLM/SenseVoiceSmall",
"AXERA-TECH/SenseVoice",
"alextomcat/SenseVoiceSmall",
"ChenChenyu/SenseVoiceSmall-finetuned",
"apinge/sensevoice-small",
]
# —————— Language Options ——————
WHISPER_LANGUAGES = [
"auto", "af","am","ar","as","az","ba","be","bg","bn","bo",
"br","bs","ca","cs","cy","da","de","el","en","es","et",
"eu","fa","fi","fo","fr","gl","gu","ha","haw","he","hi",
"hr","ht","hu","hy","id","is","it","ja","jw","ka","kk",
"km","kn","ko","la","lb","ln","lo","lt","lv","mg","mi",
"mk","ml","mn","mr","ms","mt","my","ne","nl","nn","no",
"oc","pa","pl","ps","pt","ro","ru","sa","sd","si","sk",
"sl","sn","so","sq","sr","su","sv","sw","ta","te","tg",
"th","tk","tl","tr","tt","uk","ur","uz","vi","yi","yo",
"zh","yue"
]
SENSEVOICE_LANGUAGES = ["auto", "zh", "yue", "en", "ja", "ko", "nospeech"]
# —————— Caches ——————
whisper_pipes = {}
sense_models = {}
dar_pipe = None
converter = opencc.OpenCC('s2t')
# —————— Diarization Formatter ——————
def format_diarization_html(snippets):
palette = ["#e74c3c", "#3498db", "#27ae60", "#e67e22", "#9b59b6", "#16a085", "#f1c40f"]
speaker_colors = {}
html_lines = []
last_spk = None
for s in snippets:
if s.startswith("[") and "]" in s:
spk, txt = s[1:].split("]", 1)
spk, txt = spk.strip(), txt.strip()
else:
spk, txt = "", s.strip()
# hide empty lines
if not txt:
continue
# assign color if new speaker
if spk not in speaker_colors:
speaker_colors[spk] = palette[len(speaker_colors) % len(palette)]
color = speaker_colors[spk]
# simplify tag for same speaker
if spk == last_spk:
display = txt
else:
display = f"<strong>{spk}:</strong> {txt}"
last_spk = spk
html_lines.append(
f"<p style='margin:4px 0; font-family:monospace; color:{color};'>{display}</p>"
)
return "<div>" + "".join(html_lines) + "</div>"
# —————— Helpers ——————
# —————— Faster-Whisper Cache & Factory ——————
_fwhisper_models: dict[tuple[str, str], WhisperModel] = {}
def get_fwhisper_model(model_id: str, device: str) -> WhisperModel:
"""
Lazily load and cache WhisperModel(model_id) on 'cpu' or 'cuda:0'.
Uses float16 on GPU and int8 on CPU for speed.
"""
key = (model_id, device)
if key not in _fwhisper_models:
compute_type = "float16" if device.startswith("cuda") else "int8"
_fwhisper_models[key] = WhisperModel(
model_id,
device=device,
compute_type=compute_type,
)
return _fwhisper_models[key]
def get_sense_model(model_id: str, device_str: str):
key = (model_id, device_str)
if key not in sense_models:
sense_models[key] = AutoModel(
model=model_id,
vad_model="fsmn-vad",
vad_kwargs={"max_single_segment_time": 300000},
device=device_str,
hub="hf",
)
return sense_models[key]
def get_diarization_pipe():
global dar_pipe
if dar_pipe is None:
token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
try:
dar_pipe = DiarizationPipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=token or True
)
except Exception as e:
print(f"Failed to load pyannote/speaker-diarization-3.1: {e}\nFalling back to pyannote/[email protected].")
dar_pipe = DiarizationPipeline.from_pretrained(
"pyannote/[email protected]",
use_auth_token=token or True
)
# dar_pipe.to(torch.device("cpu"))
return dar_pipe
# —————— Whisper Transcription ——————
def transcribe_with_fwhisper(model: WhisperModel, audio_path: str, language: str) -> str:
"""
Runs faster-whisper's .transcribe(), then concatenates all segments.
If language == "auto", detection is automatic.
"""
lang_arg = None if language == "auto" else language
segments, _ = model.transcribe(
audio_path,
beam_size=1,
best_of=1,
language=lang_arg,
vad_filter=True,
)
return "".join(seg.text for seg in segments).strip()
def _transcribe_fwhisper_cpu(model_id, language, audio_path, enable_diar):
model = get_fwhisper_model(model_id, "cpu")
cprint('Whisper (faster-whisper) using CPU', 'red')
# Diarization-only branch
if enable_diar:
diarizer = get_diarization_pipe()
diary = diarizer(audio_path)
snippets = []
for turn, _, speaker in diary.itertracks(yield_label=True):
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
txt = transcribe_with_fwhisper(model, tmp.name, language)
os.unlink(tmp.name)
text = converter.convert(txt.strip())
snippets.append(f"[{speaker}] {text}")
return "", format_diarization_html(snippets)
# Raw-only branch
text = transcribe_with_fwhisper(model, audio_path, language)
transcript = converter.convert(text.strip())
return transcript, ""
@spaces.GPU
def _transcribe_fwhisper_gpu(model_id, language, audio_path, enable_diar):
pipe = get_fwhisper_model(model_id, "cuda")
cprint('Whisper (faster-whisper) using CUDA', 'green')
# Diarization-only branch
if enable_diar:
diarizer = get_diarization_pipe()
diary = diarizer(audio_path)
snippets = []
for turn, _, speaker in diary.itertracks(yield_label=True):
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
txt = transcribe_with_fwhisper(pipe, tmp.name, language)
os.unlink(tmp.name)
text = converter.convert(txt.strip())
snippets.append(f"[{speaker}] {text}")
return "", format_diarization_html(snippets)
# Raw-only branch
text = transcribe_with_fwhisper(pipe, tmp.name, language)
transcript = converter.convert(text.strip())
return transcript, ""
def transcribe_fwhisper(model_id, language, audio_path, device_sel, enable_diar):
if device_sel == "GPU" and torch.cuda.is_available():
return _transcribe_fwhisper_gpu(model_id, language, audio_path, enable_diar)
return _transcribe_fwhisper_cpu(model_id, language, audio_path, enable_diar)
# —————— SenseVoice Transcription ——————
def _transcribe_sense_cpu(model_id: str,
language: str,
audio_path: str,
enable_punct: bool,
enable_diar: bool):
model = get_sense_model(model_id, "cpu")
# Diarization-only branch
if enable_diar:
diarizer = get_diarization_pipe()
diary = diarizer(audio_path)
snippets = []
for turn, _, speaker in diary.itertracks(yield_label=True):
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
segs = model.generate(
input=tmp.name,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=False,
merge_length_s=0,
)
os.unlink(tmp.name)
txt = rich_transcription_postprocess(segs[0]['text'])
if not enable_punct:
txt = re.sub(r"[^\w\s]", "", txt)
txt = converter.convert(txt)
snippets.append(f"[{speaker}] {txt}")
return "", format_diarization_html(snippets)
# Raw-only branch
segs = model.generate(
input=audio_path,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=True,
merge_length_s=15,
)
text = rich_transcription_postprocess(segs[0]['text'])
if not enable_punct:
text = re.sub(r"[^\w\s]", "", text)
text = converter.convert(text)
return text, ""
@spaces.GPU
def _transcribe_sense_gpu(model_id: str,
language: str,
audio_path: str,
enable_punct: bool,
enable_diar: bool):
model = get_sense_model(model_id, "cuda:0")
# Diarization-only branch
if enable_diar:
diarizer = get_diarization_pipe()
diary = diarizer(audio_path)
snippets = []
for turn, _, speaker in diary.itertracks(yield_label=True):
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
segs = model.generate(
input=tmp.name,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=False,
merge_length_s=0,
)
os.unlink(tmp.name)
txt = rich_transcription_postprocess(segs[0]['text'])
if not enable_punct:
txt = re.sub(r"[^\w\s]", "", txt)
txt = converter.convert(txt)
snippets.append(f"[{speaker}] {txt}")
return "", format_diarization_html(snippets)
# Raw-only branch
segs = model.generate(
input=audio_path,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=True,
merge_length_s=15,
)
text = rich_transcription_postprocess(segs[0]['text'])
if not enable_punct:
text = re.sub(r"[^\w\s]", "", text)
text = converter.convert(text)
return text, ""
def transcribe_sense(model_id: str,
language: str,
audio_path: str,
enable_punct: bool,
enable_diar: bool,
device_sel: str):
if device_sel == "GPU" and torch.cuda.is_available():
return _transcribe_sense_gpu(model_id, language, audio_path, enable_punct, enable_diar)
return _transcribe_sense_cpu(model_id, language, audio_path, enable_punct, enable_diar)
# —————— Gradio UI ——————
DEMO_CSS = """
.diar {
min-height: 100px !important;
max-height: 300px;
overflow-y: auto;
padding: 8px;
border: 1px solid #444;
}
"""
Demo = gr.Blocks(css=DEMO_CSS)
with Demo:
gr.Markdown("## Whisper vs. SenseVoice (Language, Device & Diarization with Simplified→Traditional Chinese)")
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
# Examples
examples = gr.Examples(
examples=[
["interview.mp3"],
["news.mp3"]
],
inputs=[audio_input],
label="Example Audio Files"
)
with gr.Row():
with gr.Column():
gr.Markdown("### Faster-Whisper ASR")
whisper_dd = gr.Dropdown(choices=WHISPER_MODELS, value=WHISPER_MODELS[0], label="Whisper Model")
whisper_lang = gr.Dropdown(choices=WHISPER_LANGUAGES, value="auto", label="Whisper Language")
device_radio = gr.Radio(choices=["GPU", "CPU"], value="GPU", label="Device")
diar_check = gr.Checkbox(label="Enable Diarization", value=True)
out_w = gr.Textbox(label="Transcript", visible=False)
out_w_d = gr.HTML(label="Diarized Transcript", visible=True, elem_classes=["diar"])
# Toggle visibility based on checkbox
diar_check.change(lambda e: gr.update(visible=not e), inputs=diar_check, outputs=out_w)
diar_check.change(lambda e: gr.update(visible=e), inputs=diar_check, outputs=out_w_d)
btn_w = gr.Button("Transcribe with Faster-Whisper")
btn_w.click(fn=transcribe_fwhisper,
inputs=[whisper_dd, whisper_lang, audio_input, device_radio, diar_check],
outputs=[out_w, out_w_d])
with gr.Column():
gr.Markdown("### FunASR SenseVoice ASR")
sense_dd = gr.Dropdown(choices=SENSEVOICE_MODELS, value=SENSEVOICE_MODELS[0], label="SenseVoice Model")
sense_lang = gr.Dropdown(choices=SENSEVOICE_LANGUAGES, value="auto", label="SenseVoice Language")
device_radio_sense = gr.Radio(choices=["GPU", "CPU"], value="GPU", label="Device")
punct_chk = gr.Checkbox(label="Enable Punctuation", value=True)
diar_s_chk = gr.Checkbox(label="Enable Diarization", value=True)
out_s = gr.Textbox(label="Transcript", visible=False)
out_s_d = gr.HTML(label="Diarized Transcript", visible=True, elem_classes=["diar"])
# Toggle visibility
diar_s_chk.change(lambda e: gr.update(visible=not e), inputs=diar_s_chk, outputs=out_s)
diar_s_chk.change(lambda e: gr.update(visible=e), inputs=diar_s_chk, outputs=out_s_d)
btn_s = gr.Button("Transcribe with SenseVoice")
btn_s.click(fn=transcribe_sense,
inputs=[sense_dd, sense_lang, audio_input, punct_chk, diar_s_chk, device_radio_sense],
outputs=[out_s, out_s_d])
if __name__ == "__main__":
Demo.launch()
|