Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,575 Bytes
ef51ddd a8b6e59 7833553 ef51ddd a8b6e59 7833553 ef51ddd 019d245 a8b6e59 ef51ddd a8b6e59 848c7e5 a8b6e59 ef51ddd a8b6e59 ef51ddd 38f97a7 ef51ddd 019d245 7833553 a8b6e59 ef51ddd f737f82 a06fc9e 019d245 9b896b6 019d245 a06fc9e 019d245 ef51ddd a06fc9e 019d245 9b896b6 019d245 ef51ddd 7833553 95897a7 7833553 38f97a7 7833553 f737f82 7833553 38f97a7 7833553 f737f82 ef51ddd 38f97a7 ef51ddd 38f97a7 019d245 ef51ddd 019d245 9b896b6 019d245 38f97a7 a8b6e59 38f97a7 a8b6e59 ef51ddd 019d245 38f97a7 ef51ddd 5ace2c9 f737f82 7833553 5ace2c9 38f97a7 5ace2c9 7833553 38f97a7 5ace2c9 38f97a7 5ace2c9 38f97a7 5ace2c9 38f97a7 5ace2c9 a8b6e59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import os
import re
import tempfile
import torch
import gradio as gr
from transformers import pipeline
from pydub import AudioSegment
from pyannote.audio import Pipeline as DiarizationPipeline
import spaces # zeroGPU support
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
# —————— Model Lists ——————
WHISPER_MODELS = [
"openai/whisper-large-v3-turbo",
"openai/whisper-large-v3",
"openai/whisper-tiny",
"openai/whisper-small",
"openai/whisper-medium",
"openai/whisper-base",
"JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW",
"Jingmiao/whisper-small-zh_tw",
"DDTChen/whisper-medium-zh-tw",
"kimbochen/whisper-small-zh-tw",
"JacobLinCool/whisper-large-v3-turbo-zh-TW-clean-1",
"JunWorks/whisper-small-zhTW",
"WANGTINGTING/whisper-large-v2-zh-TW-vol2",
"xmzhu/whisper-tiny-zh-TW",
"ingrenn/whisper-small-common-voice-13-zh-TW",
"jun-han/whisper-small-zh-TW",
"xmzhu/whisper-tiny-zh-TW-baseline",
"JacobLinCool/whisper-large-v3-turbo-common_voice_16_1-zh-TW-2",
"JacobLinCool/whisper-large-v3-common_voice_19_0-zh-TW-full-1",
"momo103197/whisper-small-zh-TW-mix",
"JacobLinCool/whisper-large-v3-turbo-zh-TW-clean-1-merged",
"JacobLinCool/whisper-large-v2-common_voice_19_0-zh-TW-full-1",
"kimas1269/whisper-meduim_zhtw",
"JunWorks/whisper-base-zhTW",
"JunWorks/whisper-small-zhTW-frozenDecoder",
"sandy1990418/whisper-large-v3-turbo-zh-tw",
"JacobLinCool/whisper-large-v3-turbo-common_voice_16_1-zh-TW-pissa-merged",
"momo103197/whisper-small-zh-TW-16",
"k1nto/Belle-whisper-large-v3-zh-punct-ct2"
]
SENSEVOICE_MODELS = [
"FunAudioLLM/SenseVoiceSmall",
"AXERA-TECH/SenseVoice",
"alextomcat/SenseVoiceSmall",
"ChenChenyu/SenseVoiceSmall-finetuned",
"apinge/sensevoice-small",
]
# —————— Language Options ——————
WHISPER_LANGUAGES = [
"auto", "af","am","ar","as","az","ba","be","bg","bn","bo","br","bs","ca",
"cs","cy","da","de","el","en","es","et","eu","fa","fi","fo","fr",
"gl","gu","ha","haw","he","hi","hr","ht","hu","hy","id","is","it",
"ja","jw","ka","kk","km","kn","ko","la","lb","ln","lo","lt","lv",
"mg","mi","mk","ml","mn","mr","ms","mt","my","ne","nl","nn","no",
"oc","pa","pl","ps","pt","ro","ru","sa","sd","si","sk","sl","sn",
"so","sq","sr","su","sv","sw","ta","te","tg","th","tk","tl","tr",
"tt","uk","ur","uz","vi","yi","yo","zh","yue"
]
SENSEVOICE_LANGUAGES = ["auto", "zh", "yue", "en", "ja", "ko", "nospeech"]
# —————— Caches ——————
whisper_pipes = {}
sense_models = {}
dar_pipe = None
# —————— Helpers ——————
def get_whisper_pipe(model_id: str, device: int):
key = (model_id, device)
if key not in whisper_pipes:
whisper_pipes[key] = pipeline(
"automatic-speech-recognition",
model=model_id,
device=device,
chunk_length_s=30,
stride_length_s=5,
return_timestamps=False,
)
return whisper_pipes[key]
def get_sense_model(model_id: str):
if model_id not in sense_models:
device_str = "cuda:0" if torch.cuda.is_available() else "cpu"
sense_models[model_id] = AutoModel(
model=model_id,
vad_model="fsmn-vad",
vad_kwargs={"max_single_segment_time": 300000},
device=device_str,
hub="hf",
)
return sense_models[model_id]
def get_diarization_pipe():
global dar_pipe
if dar_pipe is None:
dar_pipe = DiarizationPipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=True
)
return dar_pipe
# —————— Transcription Functions ——————
def transcribe_whisper(model_id: str, language: str, audio_path: str, device_sel: str, enable_diar: bool):
# select device for Whisper
use_gpu = (device_sel == "GPU" and torch.cuda.is_available())
device = 0 if use_gpu else -1
pipe = get_whisper_pipe(model_id, device)
# full transcription
if language == "auto":
result = pipe(audio_path)
else:
result = pipe(audio_path, generate_kwargs={"language": language})
transcript = result.get("text", "").strip()
diar_text = ""
# optional diarization for Whisper
if enable_diar:
diarizer = get_diarization_pipe()
diarization = diarizer(audio_path)
snippets = []
for turn, _, speaker in diarization.itertracks(yield_label=True):
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
if language == "auto":
seg_out = pipe(tmp.name)
else:
seg_out = pipe(tmp.name, generate_kwargs={"language": language})
os.unlink(tmp.name)
txt = seg_out.get("text", "").strip()
snippets.append(f"[{speaker}] {txt}")
diar_text = "\n".join(snippets)
return transcript, diar_text
@spaces.GPU
def transcribe_sense(model_id: str, language: str, audio_path: str, enable_punct: bool, enable_diar: bool):
model = get_sense_model(model_id)
# if no diarization, full file
if not enable_diar:
segments = model.generate(
input=audio_path,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=True,
merge_length_s=15,
)
text = rich_transcription_postprocess(segments[0]['text'])
if not enable_punct:
text = re.sub(r"[^\w\s]", "", text)
return text, ""
# with diarization: split by speaker
diarizer = get_diarization_pipe()
diarization = diarizer(audio_path)
speaker_snippets = []
for turn, _, speaker in diarization.itertracks(yield_label=True):
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
segments = model.generate(
input=tmp.name,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=False,
merge_length_s=0,
)
os.unlink(tmp.name)
txt = rich_transcription_postprocess(segments[0]['text'])
if not enable_punct:
txt = re.sub(r"[^\w\s]", "", txt)
speaker_snippets.append(f"[{speaker}] {txt}")
full_text = "\n".join(speaker_snippets)
# also return full non-diarized transcript for comparison
segments_full = model.generate(
input=audio_path,
cache={},
language=language,
use_itn=True,
batch_size_s=300,
merge_vad=True,
merge_length_s=15,
)
text_full = rich_transcription_postprocess(segments_full[0]['text'])
if not enable_punct:
text_full = re.sub(r"[^\w\s]", "", text_full)
return text_full, full_text
# —————— Gradio UI ——————
demo = gr.Blocks()
with demo:
gr.Markdown("## Whisper vs. SenseVoice (Language, Device & Speaker Diarization)")
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
with gr.Row():
# Whisper column
with gr.Column():
gr.Markdown("### Whisper ASR")
whisper_dd = gr.Dropdown(choices=WHISPER_MODELS, value=WHISPER_MODELS[0], label="Whisper Model")
whisper_lang = gr.Dropdown(choices=WHISPER_LANGUAGES, value="auto", label="Whisper Language")
device_radio = gr.Radio(choices=["GPU", "CPU"], value="GPU", label="Device")
diar_check = gr.Checkbox(label="Enable Speaker Diarization", value=False)
whisper_btn = gr.Button("Transcribe with Whisper")
out_whisper = gr.Textbox(label="Transcript")
out_whisper_diar = gr.Textbox(label="Diarized Transcript")
whisper_btn.click(
fn=transcribe_whisper,
inputs=[whisper_dd, whisper_lang, audio_input, device_radio, diar_check],
outputs=[out_whisper, out_whisper_diar]
)
# SenseVoice column
with gr.Column():
gr.Markdown("### FunASR SenseVoice ASR")
sense_dd = gr.Dropdown(choices=SENSEVOICE_MODELS, value=SENSEVOICE_MODELS[0], label="SenseVoice Model")
sense_lang = gr.Dropdown(choices=SENSEVOICE_LANGUAGES, value="auto", label="SenseVoice Language")
punct = gr.Checkbox(label="Enable Punctuation", value=True)
diar_sense = gr.Checkbox(label="Enable Speaker Diarization", value=False)
sense_btn = gr.Button("Transcribe with SenseVoice")
out_sense = gr.Textbox(label="Transcript")
out_sense_diar = gr.Textbox(label="Diarized Transcript")
sense_btn.click(
fn=transcribe_sense,
inputs=[sense_dd, sense_lang, audio_input, punct, diar_sense],
outputs=[out_sense, out_sense_diar]
)
if __name__ == "__main__":
demo.launch()
|