Spaces:
Running
on
Zero
Running
on
Zero
Add smolLM2-135M GRPO and SmolLM2-360M
Browse files
app.py
CHANGED
@@ -36,9 +36,11 @@ MODELS = {
|
|
36 |
# "Qwen3-30B-A3B": {"repo_id":"Qwen/Qwen3-30B-A3B","description":"Mixture-of-Experts model with 30.5 B total parameters (29.9 B non-embedding, 3.3 B activated per token), 48 layers, 128 experts (8 activated per token), 32 query heads & 4 KV heads, 32 768-token context (131 072 via YaRN), MoE routing for scalable specialized reasoning."},
|
37 |
# "Qwen3-235B-A22B":{"repo_id":"Qwen/Qwen3-235B-A22B","description":"Mixture-of-Experts model with 235 B total parameters (234 B non-embedding, 22 B activated per token), 94 layers, 128 experts (8 activated per token), 64 query heads & 4 KV heads, 32 768-token context (131 072 via YaRN), ultra-scale reasoning & agentic workflows."},
|
38 |
"Gemma-3-4B-IT": {"repo_id": "unsloth/gemma-3-4b-it", "description": "Gemma-3-4B-IT"},
|
|
|
39 |
"SmolLM2-135M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat", "description": "SmolLM2β135M Instruct fine-tuned on TaiwanChat"},
|
40 |
"SmolLM2-135M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct", "description": "Original SmolLM2β135M Instruct"},
|
41 |
"SmolLM2-360M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-360M-Instruct-TaiwanChat", "description": "SmolLM2β360M Instruct fine-tuned on TaiwanChat"},
|
|
|
42 |
"Llama-3.2-Taiwan-3B-Instruct": {"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct", "description": "Llama-3.2-Taiwan-3B-Instruct"},
|
43 |
"MiniCPM3-4B": {"repo_id": "openbmb/MiniCPM3-4B", "description": "MiniCPM3-4B"},
|
44 |
"Qwen2.5-3B-Instruct": {"repo_id": "Qwen/Qwen2.5-3B-Instruct", "description": "Qwen2.5-3B-Instruct"},
|
@@ -76,7 +78,7 @@ def load_pipeline(model_name):
|
|
76 |
tokenizer=tokenizer,
|
77 |
trust_remote_code=True,
|
78 |
torch_dtype=dtype,
|
79 |
-
device_map="
|
80 |
)
|
81 |
PIPELINES[model_name] = pipe
|
82 |
return pipe
|
@@ -88,7 +90,7 @@ def load_pipeline(model_name):
|
|
88 |
model=repo,
|
89 |
tokenizer=tokenizer,
|
90 |
trust_remote_code=True,
|
91 |
-
device_map="
|
92 |
)
|
93 |
PIPELINES[model_name] = pipe
|
94 |
return pipe
|
|
|
36 |
# "Qwen3-30B-A3B": {"repo_id":"Qwen/Qwen3-30B-A3B","description":"Mixture-of-Experts model with 30.5 B total parameters (29.9 B non-embedding, 3.3 B activated per token), 48 layers, 128 experts (8 activated per token), 32 query heads & 4 KV heads, 32 768-token context (131 072 via YaRN), MoE routing for scalable specialized reasoning."},
|
37 |
# "Qwen3-235B-A22B":{"repo_id":"Qwen/Qwen3-235B-A22B","description":"Mixture-of-Experts model with 235 B total parameters (234 B non-embedding, 22 B activated per token), 94 layers, 128 experts (8 activated per token), 64 query heads & 4 KV heads, 32 768-token context (131 072 via YaRN), ultra-scale reasoning & agentic workflows."},
|
38 |
"Gemma-3-4B-IT": {"repo_id": "unsloth/gemma-3-4b-it", "description": "Gemma-3-4B-IT"},
|
39 |
+
"SmolLM2_135M_Grpo_Gsm8k":{"repo_id":"prithivMLmods/SmolLM2_135M_Grpo_Gsm8k", "desscription":"SmolLM2_135M_Grpo_Gsm8k"},
|
40 |
"SmolLM2-135M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat", "description": "SmolLM2β135M Instruct fine-tuned on TaiwanChat"},
|
41 |
"SmolLM2-135M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct", "description": "Original SmolLM2β135M Instruct"},
|
42 |
"SmolLM2-360M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-360M-Instruct-TaiwanChat", "description": "SmolLM2β360M Instruct fine-tuned on TaiwanChat"},
|
43 |
+
"SmolLM2-360M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-360M-Instruct", "description": "Original SmolLM2β360M Instruct"},
|
44 |
"Llama-3.2-Taiwan-3B-Instruct": {"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct", "description": "Llama-3.2-Taiwan-3B-Instruct"},
|
45 |
"MiniCPM3-4B": {"repo_id": "openbmb/MiniCPM3-4B", "description": "MiniCPM3-4B"},
|
46 |
"Qwen2.5-3B-Instruct": {"repo_id": "Qwen/Qwen2.5-3B-Instruct", "description": "Qwen2.5-3B-Instruct"},
|
|
|
78 |
tokenizer=tokenizer,
|
79 |
trust_remote_code=True,
|
80 |
torch_dtype=dtype,
|
81 |
+
device_map="xpu"
|
82 |
)
|
83 |
PIPELINES[model_name] = pipe
|
84 |
return pipe
|
|
|
90 |
model=repo,
|
91 |
tokenizer=tokenizer,
|
92 |
trust_remote_code=True,
|
93 |
+
device_map="xpu"
|
94 |
)
|
95 |
PIPELINES[model_name] = pipe
|
96 |
return pipe
|