Luigi commited on
Commit
cb16ac6
Β·
1 Parent(s): 371669a

Add smolLM2-135M GRPO and SmolLM2-360M

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -36,9 +36,11 @@ MODELS = {
36
  # "Qwen3-30B-A3B": {"repo_id":"Qwen/Qwen3-30B-A3B","description":"Mixture-of-Experts model with 30.5 B total parameters (29.9 B non-embedding, 3.3 B activated per token), 48 layers, 128 experts (8 activated per token), 32 query heads & 4 KV heads, 32 768-token context (131 072 via YaRN), MoE routing for scalable specialized reasoning."},
37
  # "Qwen3-235B-A22B":{"repo_id":"Qwen/Qwen3-235B-A22B","description":"Mixture-of-Experts model with 235 B total parameters (234 B non-embedding, 22 B activated per token), 94 layers, 128 experts (8 activated per token), 64 query heads & 4 KV heads, 32 768-token context (131 072 via YaRN), ultra-scale reasoning & agentic workflows."},
38
  "Gemma-3-4B-IT": {"repo_id": "unsloth/gemma-3-4b-it", "description": "Gemma-3-4B-IT"},
 
39
  "SmolLM2-135M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat", "description": "SmolLM2‑135M Instruct fine-tuned on TaiwanChat"},
40
  "SmolLM2-135M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct", "description": "Original SmolLM2‑135M Instruct"},
41
  "SmolLM2-360M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-360M-Instruct-TaiwanChat", "description": "SmolLM2‑360M Instruct fine-tuned on TaiwanChat"},
 
42
  "Llama-3.2-Taiwan-3B-Instruct": {"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct", "description": "Llama-3.2-Taiwan-3B-Instruct"},
43
  "MiniCPM3-4B": {"repo_id": "openbmb/MiniCPM3-4B", "description": "MiniCPM3-4B"},
44
  "Qwen2.5-3B-Instruct": {"repo_id": "Qwen/Qwen2.5-3B-Instruct", "description": "Qwen2.5-3B-Instruct"},
@@ -76,7 +78,7 @@ def load_pipeline(model_name):
76
  tokenizer=tokenizer,
77
  trust_remote_code=True,
78
  torch_dtype=dtype,
79
- device_map="auto"
80
  )
81
  PIPELINES[model_name] = pipe
82
  return pipe
@@ -88,7 +90,7 @@ def load_pipeline(model_name):
88
  model=repo,
89
  tokenizer=tokenizer,
90
  trust_remote_code=True,
91
- device_map="auto"
92
  )
93
  PIPELINES[model_name] = pipe
94
  return pipe
 
36
  # "Qwen3-30B-A3B": {"repo_id":"Qwen/Qwen3-30B-A3B","description":"Mixture-of-Experts model with 30.5 B total parameters (29.9 B non-embedding, 3.3 B activated per token), 48 layers, 128 experts (8 activated per token), 32 query heads & 4 KV heads, 32 768-token context (131 072 via YaRN), MoE routing for scalable specialized reasoning."},
37
  # "Qwen3-235B-A22B":{"repo_id":"Qwen/Qwen3-235B-A22B","description":"Mixture-of-Experts model with 235 B total parameters (234 B non-embedding, 22 B activated per token), 94 layers, 128 experts (8 activated per token), 64 query heads & 4 KV heads, 32 768-token context (131 072 via YaRN), ultra-scale reasoning & agentic workflows."},
38
  "Gemma-3-4B-IT": {"repo_id": "unsloth/gemma-3-4b-it", "description": "Gemma-3-4B-IT"},
39
+ "SmolLM2_135M_Grpo_Gsm8k":{"repo_id":"prithivMLmods/SmolLM2_135M_Grpo_Gsm8k", "desscription":"SmolLM2_135M_Grpo_Gsm8k"},
40
  "SmolLM2-135M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat", "description": "SmolLM2‑135M Instruct fine-tuned on TaiwanChat"},
41
  "SmolLM2-135M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct", "description": "Original SmolLM2‑135M Instruct"},
42
  "SmolLM2-360M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-360M-Instruct-TaiwanChat", "description": "SmolLM2‑360M Instruct fine-tuned on TaiwanChat"},
43
+ "SmolLM2-360M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-360M-Instruct", "description": "Original SmolLM2‑360M Instruct"},
44
  "Llama-3.2-Taiwan-3B-Instruct": {"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct", "description": "Llama-3.2-Taiwan-3B-Instruct"},
45
  "MiniCPM3-4B": {"repo_id": "openbmb/MiniCPM3-4B", "description": "MiniCPM3-4B"},
46
  "Qwen2.5-3B-Instruct": {"repo_id": "Qwen/Qwen2.5-3B-Instruct", "description": "Qwen2.5-3B-Instruct"},
 
78
  tokenizer=tokenizer,
79
  trust_remote_code=True,
80
  torch_dtype=dtype,
81
+ device_map="xpu"
82
  )
83
  PIPELINES[model_name] = pipe
84
  return pipe
 
90
  model=repo,
91
  tokenizer=tokenizer,
92
  trust_remote_code=True,
93
+ device_map="xpu"
94
  )
95
  PIPELINES[model_name] = pipe
96
  return pipe