Tim Luka Horstmann
commited on
Commit
·
cb8303f
1
Parent(s):
61a9825
Initial setup
Browse files- Dockerfile +28 -0
- app.py +67 -0
- cv_embeddings.json +0 -0
- requirements.txt +6 -0
Dockerfile
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a base image
|
2 |
+
FROM python:3.10-slim
|
3 |
+
|
4 |
+
# Set working directory
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Install system dependencies (e.g., for torch, sentence-transformers)
|
8 |
+
RUN apt-get update && apt-get install -y \
|
9 |
+
gcc \
|
10 |
+
g++ \
|
11 |
+
libffi-dev \
|
12 |
+
&& rm -rf /var/lib/apt/lists/*
|
13 |
+
|
14 |
+
# Copy requirements file
|
15 |
+
COPY requirements.txt .
|
16 |
+
|
17 |
+
# Install Python dependencies
|
18 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
19 |
+
|
20 |
+
# Copy application files
|
21 |
+
COPY app.py .
|
22 |
+
COPY cv_embeddings.json .
|
23 |
+
|
24 |
+
# Expose the port FastAPI will run on
|
25 |
+
EXPOSE 7860
|
26 |
+
|
27 |
+
# Command to run the application
|
28 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from transformers import pipeline, TextIteratorStreamer
|
5 |
+
from threading import Thread
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from fastapi import FastAPI, HTTPException
|
9 |
+
from fastapi.responses import StreamingResponse
|
10 |
+
from pydantic import BaseModel
|
11 |
+
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
# Load precomputed CV embeddings
|
15 |
+
with open("cv_embeddings.json", "r", encoding="utf-8") as f:
|
16 |
+
cv_data = json.load(f)
|
17 |
+
cv_chunks = [item["chunk"] for item in cv_data]
|
18 |
+
cv_embeddings = np.array([item["embedding"] for item in cv_data])
|
19 |
+
|
20 |
+
cv_embeddings_tensor = torch.tensor(cv_embeddings)
|
21 |
+
|
22 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2", device="cpu")
|
23 |
+
|
24 |
+
generator = pipeline(
|
25 |
+
"text-generation",
|
26 |
+
model="distilgpt2",
|
27 |
+
device=-1,
|
28 |
+
)
|
29 |
+
|
30 |
+
def retrieve_context(query, top_k=3):
|
31 |
+
query_embedding = embedder.encode(query, convert_to_tensor=True).unsqueeze(0)
|
32 |
+
similarities = F.cosine_similarity(query_embedding, cv_embeddings_tensor, dim=1)
|
33 |
+
top_k = min(top_k, len(similarities))
|
34 |
+
top_indices = torch.topk(similarities, k=top_k).indices.cpu().numpy()
|
35 |
+
return "\n".join([cv_chunks[i] for i in top_indices])
|
36 |
+
|
37 |
+
def stream_response(query):
|
38 |
+
context = retrieve_context(query)
|
39 |
+
prompt = (
|
40 |
+
f"I am Tim Luka Horstmann, a German Computer Scientist. Based on my CV:\n{context}\n\n"
|
41 |
+
f"Question: {query}\nAnswer:"
|
42 |
+
)
|
43 |
+
|
44 |
+
streamer = TextIteratorStreamer(generator.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
45 |
+
generation_kwargs = {
|
46 |
+
"text_inputs": prompt,
|
47 |
+
"max_new_tokens": 200,
|
48 |
+
"do_sample": False,
|
49 |
+
"streamer": streamer,
|
50 |
+
}
|
51 |
+
|
52 |
+
thread = Thread(target=generator, kwargs=generation_kwargs)
|
53 |
+
thread.start()
|
54 |
+
|
55 |
+
for token in streamer:
|
56 |
+
yield f"data: {token}\n\n"
|
57 |
+
yield "data: [DONE]\n\n"
|
58 |
+
|
59 |
+
class QueryRequest(BaseModel):
|
60 |
+
data: list
|
61 |
+
|
62 |
+
@app.post("/api/predict")
|
63 |
+
async def predict(request: QueryRequest):
|
64 |
+
if not request.data or not isinstance(request.data, list) or len(request.data) < 1:
|
65 |
+
raise HTTPException(status_code=400, detail="Invalid input: 'data' must be a non-empty list")
|
66 |
+
query = request.data[0]
|
67 |
+
return StreamingResponse(stream_response(query), media_type="text/event-stream")
|
cv_embeddings.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.115.0
|
2 |
+
uvicorn==0.31.0
|
3 |
+
sentence-transformers==3.1.1
|
4 |
+
transformers==4.44.2
|
5 |
+
torch==2.4.1
|
6 |
+
numpy==1.26.4
|