from datetime import datetime import json import time import numpy as np from sentence_transformers import SentenceTransformer from fastapi import FastAPI, HTTPException, BackgroundTasks from fastapi.responses import StreamingResponse from pydantic import BaseModel from llama_cpp import Llama from huggingface_hub import login, hf_hub_download import logging import os import faiss import asyncio import psutil # Added for RAM tracking # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) app = FastAPI() # Global lock for model access model_lock = asyncio.Lock() # Authenticate with Hugging Face hf_token = os.getenv("HF_TOKEN") if not hf_token: logger.error("HF_TOKEN environment variable not set.") raise ValueError("HF_TOKEN not set") login(token=hf_token) # Models Configuration sentence_transformer_model = "all-MiniLM-L6-v2" repo_id = "bartowski/deepcogito_cogito-v1-preview-llama-3B-GGUF" # "bartowski/deepcogito_cogito-v1-preview-llama-8B-GGUF" filename = "deepcogito_cogito-v1-preview-llama-3B-Q4_K_M.gguf" # Define FAQs faqs = [ {"question": "What is your name?", "answer": "My name is Tim Luka Horstmann."}, {"question": "Where do you live?", "answer": "I live in Paris, France."}, {"question": "What is your education?", "answer": "I am currently pursuing a MSc in Data and AI at Institut Polytechnique de Paris. I have an MPhil in Advanced Computer Science from the University of Cambridge, and a BSc in Business Informatics from RheinMain University of Applied Sciences."}, {"question": "What are your skills?", "answer": "I am proficient in Python, Java, SQL, Cypher, SPARQL, VBA, JavaScript, HTML/CSS, and Ruby. I also use tools like PyTorch, Hugging Face, Scikit-Learn, NumPy, Pandas, Matplotlib, Jupyter, Git, Bash, IoT, Ansible, QuickSight, and Wordpress."}, {"question": "How are you?", "answer": "I’m doing great, thanks for asking! I’m enjoying life in Paris and working on some exciting AI projects."}, {"question": "What do you do?", "answer": "I’m a Computer Scientist and AI enthusiast, currently pursuing a MSc in Data and AI at Institut Polytechnique de Paris and interning as a Machine Learning Research Engineer at Hi! PARIS."}, {"question": "How’s it going?", "answer": "Things are going well, thanks! I’m busy with my studies and research, but I love the challenges and opportunities I get to explore."}, ] try: # Load CV embeddings and build FAISS index logger.info("Loading CV embeddings from cv_embeddings.json") with open("cv_embeddings.json", "r", encoding="utf-8") as f: cv_data = json.load(f) cv_chunks = [item["chunk"] for item in cv_data] cv_embeddings = np.array([item["embedding"] for item in cv_data]).astype('float32') faiss.normalize_L2(cv_embeddings) faiss_index = faiss.IndexFlatIP(cv_embeddings.shape[1]) faiss_index.add(cv_embeddings) logger.info("FAISS index built successfully") # Load embedding model logger.info("Loading SentenceTransformer model") embedder = SentenceTransformer(sentence_transformer_model, device="cpu") logger.info("SentenceTransformer model loaded") # Compute FAQ embeddings faq_questions = [faq["question"] for faq in faqs] faq_embeddings = embedder.encode(faq_questions, convert_to_numpy=True).astype("float32") faiss.normalize_L2(faq_embeddings) # Load the 8B Cogito model with optimized parameters logger.info(f"Loading {filename} model") model_path = hf_hub_download( repo_id=repo_id, filename=filename, local_dir="/app/cache" if os.getenv("HF_HOME") else None, token=hf_token, ) generator = Llama( model_path=model_path, n_ctx=3072, n_threads=2, n_batch=64, n_gpu_layers=0, use_mlock=True, f16_kv=True, verbose=True, batch_prefill=True, prefill_logits=False, ) logger.info(f"{filename} model loaded") except Exception as e: logger.error(f"Startup error: {str(e)}", exc_info=True) raise def retrieve_context(query, top_k=2): try: query_embedding = embedder.encode(query, convert_to_numpy=True).astype("float32") query_embedding = query_embedding.reshape(1, -1) faiss.normalize_L2(query_embedding) distances, indices = faiss_index.search(query_embedding, top_k) return "\n".join([cv_chunks[i] for i in indices[0]]) except Exception as e: logger.error(f"Error in retrieve_context: {str(e)}") raise # Load the full CV at startup with explicit UTF-8 handling try: with open("cv_text.txt", "r", encoding="utf-8") as f: full_cv_text = f.read() if not isinstance(full_cv_text, str): full_cv_text = str(full_cv_text) logger.info("CV text loaded successfully") except Exception as e: logger.error(f"Error loading cv_text.txt: {str(e)}") raise async def stream_response(query, history): logger.info(f"Processing query: {query}") start_time = time.time() first_token_logged = False current_date = datetime.now().strftime("%Y-%m-%d") system_prompt = ( "You are Tim Luka Horstmann, a Computer Scientist. A user is asking you a question. Respond as yourself, using the first person, in a friendly and concise manner. " "For questions about your CV, base your answer *exclusively* on the provided CV information below and do not add any details not explicitly stated. " "For casual questions not covered by the CV, respond naturally but limit answers to general truths about yourself (e.g., your current location is Paris, France, or your field is AI) " "and say 'I don't have specific details to share about that' if pressed for specifics beyond the CV or FAQs. Do not invent facts, experiences, or opinions not supported by the CV or FAQs. " f"Today’s date is {current_date}. " f"CV: {full_cv_text}" ) if not isinstance(system_prompt, str): system_prompt = str(system_prompt) logger.info(f"System prompt type: {type(system_prompt)}, length: {len(system_prompt)}") messages = [{"role": "system", "content": system_prompt}] + history + [{"role": "user", "content": query}] try: system_tokens = len(generator.tokenize(system_prompt.encode('utf-8'), add_bos=True, special=True)) query_tokens = len(generator.tokenize(query.encode('utf-8'), add_bos=False, special=True)) history_tokens = [len(generator.tokenize(msg["content"].encode('utf-8'), add_bos=False, special=True)) for msg in history] except Exception as e: logger.error(f"Tokenization error: {str(e)}") yield f"data: Sorry, I encountered a tokenization error: {str(e)}\n\n" yield "data: [DONE]\n\n" return total_tokens = system_tokens + query_tokens + sum(history_tokens) + len(history) * 10 + 10 max_allowed_tokens = generator.n_ctx() - 512 - 100 while total_tokens > max_allowed_tokens and history: removed_msg = history.pop(0) removed_tokens = len(generator.tokenize(removed_msg["content"].encode('utf-8'), add_bos=False, special=True)) total_tokens -= (removed_tokens + 10) messages = [{"role": "system", "content": system_prompt}] + history + [{"role": "user", "content": query}] async with model_lock: try: for chunk in generator.create_chat_completion( messages=messages, max_tokens=512, stream=True, temperature=0.3, top_p=0.7, repeat_penalty=1.2 ): token = chunk['choices'][0]['delta'].get('content', '') if token: if not first_token_logged: logger.info(f"First token time: {time.time() - start_time:.2f}s") first_token_logged = True yield f"data: {token}\n\n" yield "data: [DONE]\n\n" except Exception as e: logger.error(f"Generation error: {str(e)}") yield f"data: Sorry, I encountered an error during generation: {str(e)}\n\n" yield "data: [DONE]\n\n" class QueryRequest(BaseModel): query: str history: list[dict] # RAM Usage Tracking Function def get_ram_usage(): memory = psutil.virtual_memory() total_ram = memory.total / (1024 ** 3) # Convert to GB used_ram = memory.used / (1024 ** 3) # Convert to GB free_ram = memory.available / (1024 ** 3) # Convert to GB percent_used = memory.percent return { "total_ram_gb": round(total_ram, 2), "used_ram_gb": round(used_ram, 2), "free_ram_gb": round(free_ram, 2), "percent_used": percent_used } @app.post("/api/predict") async def predict(request: QueryRequest): query = request.query history = request.history return StreamingResponse(stream_response(query, history), media_type="text/event-stream") @app.get("/health") async def health_check(): return {"status": "healthy"} @app.get("/model_info") async def model_info(): return { "model_name": "deepcogito_cogito-v1-preview-llama-8B-GGUF", "model_size": "8B", "quantization": "Q4_K_M", "embedding_model": sentence_transformer_model, "faiss_index_size": len(cv_chunks), "faiss_index_dim": cv_embeddings.shape[1], } @app.get("/ram_usage") async def ram_usage(): """Endpoint to get current RAM usage.""" try: ram_stats = get_ram_usage() return ram_stats except Exception as e: logger.error(f"Error retrieving RAM usage: {str(e)}") raise HTTPException(status_code=500, detail=f"Error retrieving RAM usage: {str(e)}") @app.on_event("startup") async def warm_up_model(): logger.info("Warming up the model...") dummy_query = "Hello" dummy_history = [] async for _ in stream_response(dummy_query, dummy_history): pass logger.info("Model warm-up completed.") # Log initial RAM usage ram_stats = get_ram_usage() logger.info(f"Initial RAM usage after startup: {ram_stats}") # Add a background task to keep the model warm @app.on_event("startup") async def setup_periodic_tasks(): asyncio.create_task(keep_model_warm()) logger.info("Periodic model warm-up task scheduled") async def keep_model_warm(): """Background task that keeps the model warm by sending periodic requests""" while True: try: logger.info("Performing periodic model warm-up") dummy_query = "Say only the word 'ok.'" dummy_history = [] # Process a dummy query through the generator to keep it warm async for _ in stream_response(dummy_query, dummy_history): pass logger.info("Periodic warm-up completed") except Exception as e: logger.error(f"Error in periodic warm-up: {str(e)}") # Wait for 13 minutes before the next warm-up await asyncio.sleep(13 * 60)