Spaces:
Running
Running
File size: 14,448 Bytes
3d635c7 24088e0 3d635c7 bc44dae 24088e0 bc44dae 24088e0 bc44dae 3d635c7 24088e0 bc44dae 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 bc44dae 3d635c7 24088e0 bc44dae 24088e0 3e4c841 24088e0 3e4c841 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 24088e0 3d635c7 bc44dae 24088e0 3d635c7 24088e0 3d635c7 24088e0 bc44dae 24088e0 bc44dae 24088e0 bc44dae 24088e0 3e4c841 24088e0 bc44dae 24088e0 3d635c7 3e4c841 24088e0 3d635c7 24088e0 bc44dae 3d635c7 24088e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import os
import uvicorn
import asyncio
from concurrent.futures import ThreadPoolExecutor
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.responses import HTMLResponse
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
from typing import Optional, Dict
import time
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Inisialisasi FastAPI
app = FastAPI(title="LyonPoy AI Chat - Optimized")
# Optimized model configuration - prioritize smaller, faster models
MODELS = {
"distil-gpt-2": {
"name": "DistilGPT-2",
"model_path": "Lyon28/Distil_GPT-2",
"task": "text-generation",
"priority": 1 # Highest priority - smallest model
},
"gpt-2-tinny": {
"name": "GPT-2 Tinny",
"model_path": "Lyon28/GPT-2-Tinny",
"task": "text-generation",
"priority": 2
},
"tinny-llama": {
"name": "Tinny Llama",
"model_path": "Lyon28/Tinny-Llama",
"task": "text-generation",
"priority": 3
},
"gpt-2": {
"name": "GPT-2",
"model_path": "Lyon28/GPT-2",
"task": "text-generation",
"priority": 4
},
"bert-tinny": {
"name": "BERT Tinny",
"model_path": "Lyon28/Bert-Tinny",
"task": "text-classification",
"priority": 5
},
"albert-base-v2": {
"name": "ALBERT Base V2",
"model_path": "Lyon28/Albert-Base-V2",
"task": "text-classification",
"priority": 6
},
"distilbert-base-uncased": {
"name": "DistilBERT",
"model_path": "Lyon28/Distilbert-Base-Uncased",
"task": "text-classification",
"priority": 7
},
"electra-small": {
"name": "ELECTRA Small",
"model_path": "Lyon28/Electra-Small",
"task": "text-classification",
"priority": 8
},
"t5-small": {
"name": "T5 Small",
"model_path": "Lyon28/T5-Small",
"task": "text2text-generation",
"priority": 9
},
"pythia": {
"name": "Pythia",
"model_path": "Lyon28/Pythia",
"task": "text-generation",
"priority": 10
},
"gpt-neo": {
"name": "GPT-Neo",
"model_path": "Lyon28/GPT-Neo",
"task": "text-generation",
"priority": 11 # Largest model - lowest priority
}
}
class ChatRequest(BaseModel):
message: str
model: Optional[str] = "distil-gpt-2" # Default to fastest model
# Global state
app.state.pipelines = {}
app.state.loading_models = set()
app.state.executor = ThreadPoolExecutor(max_workers=2)
# Optimized model loading
async def load_model_async(model_id: str):
"""Load model in background thread"""
if model_id in app.state.loading_models:
return False
app.state.loading_models.add(model_id)
try:
model_config = MODELS[model_id]
logger.info(f"π Loading {model_config['name']}...")
# Load in thread to avoid blocking
loop = asyncio.get_event_loop()
def load_model():
device = 0 if torch.cuda.is_available() else -1
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
return pipeline(
task=model_config["task"],
model=model_config["model_path"],
device=device,
torch_dtype=dtype,
use_fast=True,
trust_remote_code=True,
low_cpu_mem_usage=True,
# Optimization for faster inference
pad_token_id=50256 if "gpt" in model_id else None
)
pipeline_obj = await loop.run_in_executor(app.state.executor, load_model)
app.state.pipelines[model_id] = pipeline_obj
logger.info(f"β
{model_config['name']} loaded successfully")
return True
except Exception as e:
logger.error(f"β Failed to load {model_id}: {e}")
return False
finally:
app.state.loading_models.discard(model_id)
@app.on_event("startup")
async def load_models():
"""Load high-priority models on startup"""
os.environ['HF_HOME'] = './cache/huggingface' # Persistent cache
os.makedirs(os.environ['HF_HOME'], exist_ok=True)
# Pre-load top 3 fastest models
priority_models = sorted(MODELS.keys(), key=lambda x: MODELS[x]['priority'])[:3]
tasks = []
for model_id in priority_models:
task = asyncio.create_task(load_model_async(model_id))
tasks.append(task)
# Load models concurrently
await asyncio.gather(*tasks, return_exceptions=True)
logger.info("π LyonPoy AI Chat Ready!")
# Optimized inference
async def run_inference(model_id: str, message: str):
"""Run inference in background thread"""
if model_id not in app.state.pipelines:
# Try to load model if not available
success = await load_model_async(model_id)
if not success:
raise HTTPException(status_code=503, detail=f"Model {model_id} unavailable")
pipe = app.state.pipelines[model_id]
model_config = MODELS[model_id]
loop = asyncio.get_event_loop()
def inference():
start_time = time.time()
try:
if model_config["task"] == "text-generation":
# Optimized generation parameters
result = pipe(
message,
max_new_tokens=min(50, 150 - len(message.split())), # Shorter responses
temperature=0.7,
do_sample=True,
top_p=0.9,
top_k=50,
repetition_penalty=1.1,
pad_token_id=pipe.tokenizer.eos_token_id if hasattr(pipe.tokenizer, 'eos_token_id') else 50256
)[0]['generated_text']
# Clean output
if result.startswith(message):
result = result[len(message):].strip()
# Limit response length
if len(result) > 200:
result = result[:200] + "..."
elif model_config["task"] == "text-classification":
output = pipe(message)[0]
result = f"Analisis: {output['label']} (Keyakinan: {output['score']:.2f})"
elif model_config["task"] == "text2text-generation":
result = pipe(message, max_length=100, num_beams=2)[0]['generated_text']
inference_time = time.time() - start_time
logger.info(f"β‘ Inference time: {inference_time:.2f}s for {model_config['name']}")
return result
except Exception as e:
logger.error(f"Inference error: {e}")
raise e
return await loop.run_in_executor(app.state.executor, inference)
# Frontend route - simplified HTML
@app.get("/", response_class=HTMLResponse)
async def get_frontend():
html_content = '''
<!DOCTYPE html>
<html lang="id">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>LyonPoy AI Chat - Fast Mode</title>
<style>
* { margin: 0; padding: 0; box-sizing: border-box; }
body { font-family: system-ui; background: #f5f5f5; padding: 20px; }
.container { max-width: 600px; margin: 0 auto; background: white; border-radius: 10px; overflow: hidden; }
.header { background: #007bff; color: white; padding: 15px; }
.chat { height: 400px; overflow-y: auto; padding: 15px; background: #fafafa; }
.message { margin: 10px 0; padding: 8px 12px; border-radius: 8px; }
.user { background: #007bff; color: white; margin-left: 20%; }
.bot { background: white; border: 1px solid #ddd; margin-right: 20%; }
.input-area { padding: 15px; display: flex; gap: 10px; }
input { flex: 1; padding: 10px; border: 1px solid #ddd; border-radius: 5px; }
button { padding: 10px 15px; background: #007bff; color: white; border: none; border-radius: 5px; cursor: pointer; }
select { padding: 5px; margin-left: 10px; }
.loading { color: #666; font-style: italic; }
</style>
</head>
<body>
<div class="container">
<div class="header">
<h1>π LyonPoy AI - Fast Mode</h1>
<select id="model">
<option value="distil-gpt-2">DistilGPT-2 (Fastest)</option>
<option value="gpt-2-tinny">GPT-2 Tinny</option>
<option value="tinny-llama">Tinny Llama</option>
<option value="gpt-2">GPT-2</option>
<option value="bert-tinny">BERT Tinny</option>
<option value="albert-base-v2">ALBERT Base V2</option>
<option value="distilbert-base-uncased">DistilBERT</option>
<option value="electra-small">ELECTRA Small</option>
<option value="t5-small">T5 Small</option>
<option value="pythia">Pythia</option>
<option value="gpt-neo">GPT-Neo (Slowest)</option>
</select>
</div>
<div class="chat" id="chat"></div>
<div class="input-area">
<input type="text" id="message" placeholder="Ketik pesan..." maxlength="200">
<button onclick="sendMessage()">Kirim</button>
</div>
</div>
<script>
const chat = document.getElementById('chat');
const messageInput = document.getElementById('message');
const modelSelect = document.getElementById('model');
function addMessage(content, isUser = false) {
const div = document.createElement('div');
div.className = `message ${isUser ? 'user' : 'bot'}`;
div.textContent = content;
chat.appendChild(div);
chat.scrollTop = chat.scrollHeight;
}
async function sendMessage() {
const message = messageInput.value.trim();
if (!message) return;
addMessage(message, true);
messageInput.value = '';
addMessage('β³ Thinking...', false);
const startTime = Date.now();
try {
const response = await fetch('/chat', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
message: message,
model: modelSelect.value
})
});
const data = await response.json();
const responseTime = ((Date.now() - startTime) / 1000).toFixed(1);
// Remove loading message
chat.removeChild(chat.lastElementChild);
if (data.status === 'success') {
addMessage(`${data.response} (${responseTime}s)`, false);
} else {
addMessage('β Error occurred', false);
}
} catch (error) {
chat.removeChild(chat.lastElementChild);
addMessage('β Connection error', false);
}
}
messageInput.addEventListener('keypress', (e) => {
if (e.key === 'Enter') sendMessage();
});
// Show welcome message
addMessage('π Halo! Pilih model dan mulai chat. Model DistilGPT-2 paling cepat!', false);
</script>
</body>
</html>
'''
return HTMLResponse(content=html_content)
# Optimized chat endpoint
@app.post("/chat")
async def chat(request: ChatRequest, background_tasks: BackgroundTasks):
try:
model_id = request.model.lower()
if model_id not in MODELS:
raise HTTPException(status_code=400, detail="Model tidak tersedia")
# Limit message length for faster processing
message = request.message[:200] # Max 200 chars
# Run inference
result = await run_inference(model_id, message)
# Load next priority model in background
background_tasks.add_task(preload_next_model, model_id)
return {
"response": result,
"model": MODELS[model_id]["name"],
"status": "success"
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Chat error: {e}")
raise HTTPException(status_code=500, detail="Terjadi kesalahan")
async def preload_next_model(current_model: str):
"""Preload next model in background"""
try:
# Find next unloaded model by priority
loaded_models = set(app.state.pipelines.keys())
all_models = sorted(MODELS.keys(), key=lambda x: MODELS[x]['priority'])
for model_id in all_models:
if model_id not in loaded_models and model_id not in app.state.loading_models:
await load_model_async(model_id)
break
except Exception as e:
logger.error(f"Background loading error: {e}")
# Health check with model status
@app.get("/health")
async def health():
loaded_models = list(app.state.pipelines.keys())
return {
"status": "healthy",
"gpu": torch.cuda.is_available(),
"loaded_models": loaded_models,
"loading_models": list(app.state.loading_models)
}
# Model status endpoint
@app.get("/models")
async def get_models():
models_status = {}
for model_id, config in MODELS.items():
models_status[model_id] = {
"name": config["name"],
"loaded": model_id in app.state.pipelines,
"loading": model_id in app.state.loading_models,
"priority": config["priority"]
}
return models_status
# Cleanup on shutdown
@app.on_event("shutdown")
async def cleanup():
app.state.executor.shutdown(wait=True)
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
uvicorn.run(
app,
host="0.0.0.0",
port=port,
log_level="info",
access_log=False # Disable access log for better performance
) |