Spaces:
Running
Running
File size: 18,314 Bytes
3d635c7 138b76f a0ad28c cc603f7 bc44dae 0db9e1d bc44dae 138b76f 0db9e1d a0ad28c bc44dae 3d635c7 a0ad28c bc44dae cc603f7 0db9e1d 3d635c7 0db9e1d a0ad28c 2c15096 3d635c7 0db9e1d a0ad28c 0db9e1d 3d635c7 a0ad28c 3d635c7 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d 3d635c7 a0ad28c 3d635c7 0db9e1d a0ad28c 0db9e1d 3d635c7 0db9e1d 3d635c7 0db9e1d a0ad28c 0db9e1d 3d635c7 138b76f 0db9e1d 138b76f 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d 3d635c7 0db9e1d a0ad28c 0db9e1d 3d635c7 bc44dae 3d635c7 a0ad28c 0db9e1d a0ad28c 2c15096 a0ad28c bc44dae 0db9e1d bc44dae a0ad28c 138b76f a0ad28c 0db9e1d 2c15096 0db9e1d 138b76f 0db9e1d 3e4c841 0db9e1d a0ad28c 3e4c841 a0ad28c 3d635c7 138b76f 0db9e1d 3d635c7 a0ad28c 3d635c7 138b76f bc44dae a0ad28c 138b76f a0ad28c 138b76f 0db9e1d a0ad28c 2c15096 0db9e1d a0ad28c 0db9e1d bc44dae 138b76f bc44dae a0ad28c 138b76f a0ad28c 138b76f a0ad28c 0db9e1d a0ad28c 138b76f a0ad28c 138b76f a0ad28c 138b76f a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d 24088e0 a0ad28c 3d635c7 a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 3d635c7 0db9e1d cc603f7 2c15096 a0ad28c 2c15096 0db9e1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import os
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer, AutoModel, set_seed
import torch
from typing import Optional
import asyncio
import time
import gc
import re
import random
# Inisialisasi FastAPI
app = FastAPI(title="Character AI Chat - CPU Optimized Backend")
# CORS middleware untuk frontend terpisah
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Dalam production, ganti dengan domain spesifik
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/", response_class=HTMLResponse)
async def serve_frontend():
return FileResponse("index.html")
# Set seed untuk konsistensi
set_seed(42)
# CPU-Optimized 11 models configuration
MODELS = {
"distil-gpt-2": {
"name": "DistilGPT-2 β‘",
"model_path": "Lyon28/Distil_GPT-2",
"task": "text-generation",
"max_tokens": 35,
"priority": 1
},
"gpt-2-tinny": {
"name": "GPT-2 Tinny β‘",
"model_path": "Lyon28/GPT-2-Tinny",
"task": "text-generation",
"max_tokens": 30,
"priority": 1
},
"bert-tinny": {
"name": "BERT Tinny π",
"model_path": "Lyon28/Bert-Tinny",
"task": "text-classification",
"max_tokens": 0,
"priority": 1
},
"distilbert-base-uncased": {
"name": "DistilBERT π",
"model_path": "Lyon28/Distilbert-Base-Uncased",
"task": "text-classification",
"max_tokens": 0,
"priority": 1
},
"albert-base-v2": {
"name": "ALBERT Base π",
"model_path": "Lyon28/Albert-Base-V2",
"task": "text-classification",
"max_tokens": 0,
"priority": 2
},
"electra-small": {
"name": "ELECTRA Small π",
"model_path": "Lyon28/Electra-Small",
"task": "text-classification",
"max_tokens": 0,
"priority": 2
},
"t5-small": {
"name": "T5 Small π",
"model_path": "Lyon28/T5-Small",
"task": "text2text-generation",
"max_tokens": 40,
"priority": 2
},
"gpt-2": {
"name": "GPT-2 Standard",
"model_path": "Lyon28/GPT-2",
"task": "text-generation",
"max_tokens": 45,
"priority": 2
},
"tinny-llama": {
"name": "Tinny Llama",
"model_path": "Lyon28/Tinny-Llama",
"task": "text-generation",
"max_tokens": 50,
"priority": 3
},
"pythia": {
"name": "Pythia",
"model_path": "Lyon28/Pythia",
"task": "text-generation",
"max_tokens": 50,
"priority": 3
},
"gpt-neo": {
"name": "GPT-Neo",
"model_path": "Lyon28/GPT-Neo",
"task": "text-generation",
"max_tokens": 55,
"priority": 3
}
}
class ChatRequest(BaseModel):
message: str
model: Optional[str] = "distil-gpt-2"
situation: Optional[str] = "Santai"
location: Optional[str] = "Ruang tamu"
char_name: Optional[str] = "Sayang"
user_name: Optional[str] = "Kamu"
max_length: Optional[int] = 150
# Character AI Response Templates
CHARACTER_TEMPLATES = {
"romantic": [
"iya sayang, {context}. Apakah kamu merasa nyaman di sini?",
"tentu saja, {context}. Aku senang bisa bersama kamu seperti ini.",
"benar sekali, {context}. Rasanya damai ya berada di sini bersama.",
"hmm iya, {context}. Kamu selalu membuatku merasa bahagia.",
"ya sayang, {context}. Momen seperti ini sangat berharga untukku."
],
"casual": [
"iya, {context}. Suasananya memang enak banget.",
"betul juga, {context}. Aku juga merasa santai di sini.",
"ya ampun, {context}. Seneng deh bisa kayak gini.",
"hmm iya, {context}. Bikin pikiran jadi tenang.",
"benar banget, {context}. Cocok buat santai-santai."
],
"caring": [
"iya, {context}. Kamu baik-baik saja kan?",
"ya, {context}. Semoga kamu merasa nyaman.",
"betul, {context}. Aku harap kamu senang.",
"hmm, {context}. Apakah kamu butuh sesuatu?",
"iya sayang, {context}. Jangan sungkan bilang kalau butuh apa-apa."
],
"friendly": [
"wah iya, {context}. Keren banget ya!",
"bener tuh, {context}. Asik banget suasananya.",
"iya dong, {context}. Mantep deh!",
"setuju banget, {context}. Bikin happy.",
"ya ampun, {context}. Seru banget ini!"
]
}
def create_character_prompt(user_input: str, situation: str, location: str, char_name: str, user_name: str) -> str:
"""Create character AI style prompt"""
clean_input = user_input.replace("{{User}}", user_name).replace("{{Char}}", char_name)
prompt = f"""Situasi: {situation}
Latar: {location}
{user_name}: {clean_input}
{char_name}: """
return prompt
def enhance_character_response(response: str, char_name: str, user_name: str, situation: str, user_input: str) -> str:
"""Enhance response with character AI style"""
response = response.strip()
# Remove duplicate names/prefixes
response = re.sub(f'^{char_name}[:.]?\\s*', '', response, flags=re.IGNORECASE)
response = re.sub(f'^{user_name}[:.]?\\s*', '', response, flags=re.IGNORECASE)
response = re.sub(r'^(iya|ya|oh|hmm|tentu|baik)[:.]?\s*', '', response, flags=re.IGNORECASE)
# Determine response style based on situation and input
situation_lower = situation.lower()
input_lower = user_input.lower()
if any(word in situation_lower for word in ["romantis", "sayang", "cinta"]) or any(word in input_lower for word in ["sayang", "cinta", "peluk"]):
templates = CHARACTER_TEMPLATES["romantic"]
context_key = "romantic"
elif any(word in situation_lower for word in ["santai", "tenang", "rileks"]):
templates = CHARACTER_TEMPLATES["casual"]
context_key = "casual"
elif any(word in input_lower for word in ["baik", "sehat", "aman", "nyaman"]):
templates = CHARACTER_TEMPLATES["caring"]
context_key = "caring"
else:
templates = CHARACTER_TEMPLATES["friendly"]
context_key = "friendly"
# Generate contextual response
if not response or len(response.strip()) < 5:
# Extract context from user input
context_words = ["indah", "bagus", "cantik", "keren", "seru", "asik", "enak", "nyaman"]
found_context = next((word for word in context_words if word in input_lower), "menyenangkan")
template = random.choice(templates)
response = template.format(context=f"memang {found_context} sekali")
else:
# Enhance existing response
if not any(starter in response.lower() for starter in ["iya", "ya", "hmm", "oh", "tentu", "benar"]):
starters = ["iya", "ya", "hmm", "oh"] if context_key in ["romantic", "caring"] else ["iya", "wah", "bener"]
response = f"{random.choice(starters)}, {response}"
# Add natural endings based on context
if not any(punct in response for punct in ['.', '!', '?']):
if context_key == "romantic":
endings = ["sayang.", "ya.", "kan?", "ya sayang?"]
elif context_key == "caring":
endings = ["ya.", "kan?", "kok?", "deh."]
else:
endings = ["!", "deh!", "ya!", "kan!"]
response += random.choice(endings)
# Limit response length for CPU optimization
if len(response) > 120:
sentences = response.split('.')
if len(sentences) > 1:
response = sentences[0] + '.'
else:
response = response[:117] + "..."
return response
# CPU-Optimized startup
@app.on_event("startup")
async def load_models():
app.state.pipelines = {}
app.state.tokenizers = {}
# Set CPU optimizations
torch.set_num_threads(2)
os.environ['OMP_NUM_THREADS'] = '2'
os.environ['MKL_NUM_THREADS'] = '2'
os.environ['NUMEXPR_NUM_THREADS'] = '2'
# Set cache
os.environ['HF_HOME'] = '/tmp/.cache/huggingface'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/.cache/huggingface'
os.makedirs(os.environ['HF_HOME'], exist_ok=True)
print("π Character AI Backend - CPU Optimized Ready!")
# Enhanced Chat API for Character AI
@app.post("/chat")
async def chat(request: ChatRequest):
start_time = time.time()
try:
model_id = request.model.lower()
if model_id not in MODELS:
model_id = "distil-gpt-2"
model_config = MODELS[model_id]
# Lazy loading dengan optimasi CPU
if model_id not in app.state.pipelines:
print(f"π Loading Character Model {model_config['name']}...")
pipeline_kwargs = {
"task": model_config["task"],
"model": model_config["model_path"],
"device": -1,
"torch_dtype": torch.float32,
"model_kwargs": {
"torchscript": False,
"low_cpu_mem_usage": True
}
}
app.state.pipelines[model_id] = pipeline(**pipeline_kwargs)
gc.collect()
pipe = app.state.pipelines[model_id]
# Create character prompt
char_prompt = create_character_prompt(
request.message,
request.situation,
request.location,
request.char_name,
request.user_name
)
if model_config["task"] == "text-generation":
# Enhanced generation for character AI
result = pipe(
char_prompt,
max_length=min(len(char_prompt.split()) + model_config["max_tokens"], request.max_length // 2),
temperature=0.8,
do_sample=True,
top_p=0.9,
top_k=50,
repetition_penalty=1.1,
pad_token_id=pipe.tokenizer.eos_token_id,
num_return_sequences=1,
early_stopping=True
)[0]['generated_text']
# Extract character response
if char_prompt in result:
result = result[len(char_prompt):].strip()
# Clean and enhance response
result = enhance_character_response(result, request.char_name, request.user_name, request.situation, request.message)
elif model_config["task"] == "text-classification":
# For classification models, create emotion-based responses
try:
output = pipe(request.message, truncation=True, max_length=128)[0]
emotion_score = output['score']
if emotion_score > 0.8:
emotion_responses = [
f"iya {request.user_name}, aku merasakan energi positif dari kata-katamu!",
f"wah, {request.user_name} terlihat sangat antusias ya!",
f"senang banget deh lihat {request.user_name} kayak gini!"
]
elif emotion_score > 0.6:
emotion_responses = [
f"hmm, aku bisa merasakan perasaan {request.user_name} nih.",
f"ya {request.user_name}, suasana hatimu cukup bagus ya.",
f"oke {request.user_name}, kayaknya kamu dalam mood yang baik."
]
else:
emotion_responses = [
f"iya {request.user_name}, aku di sini untuk kamu.",
f"hmm {request.user_name}, mau cerita lebih lanjut?",
f"baiklah {request.user_name}, aku mendengarkan."
]
result = random.choice(emotion_responses)
except:
result = enhance_character_response("", request.char_name, request.user_name, request.situation, request.message)
elif model_config["task"] == "text2text-generation":
# For T5-like models
try:
t5_input = f"respond as {request.char_name} in {request.situation}: {request.message}"
result = pipe(
t5_input,
max_length=model_config["max_tokens"],
temperature=0.7,
early_stopping=True
)[0]['generated_text']
result = enhance_character_response(result, request.char_name, request.user_name, request.situation, request.message)
except:
result = enhance_character_response("", request.char_name, request.user_name, request.situation, request.message)
# Final validation
if not result or len(result.strip()) < 3:
result = enhance_character_response("", request.char_name, request.user_name, request.situation, request.message)
processing_time = round((time.time() - start_time) * 1000)
return {
"response": result,
"model": model_config["name"],
"status": "success",
"processing_time": f"{processing_time}ms",
"character": request.char_name,
"situation": request.situation,
"location": request.location
}
except Exception as e:
print(f"β Character AI Error: {e}")
processing_time = round((time.time() - start_time) * 1000)
# Fallback character responses
fallback_responses = [
f"maaf {request.user_name}, aku sedang bingung. Bisa ulangi lagi?",
f"hmm {request.user_name}, kayaknya aku butuh waktu sebentar untuk berpikir.",
f"ya {request.user_name}, coba pakai kata yang lebih sederhana?",
f"iya {request.user_name}, aku masih belajar nih. Sabar ya."
]
fallback = random.choice(fallback_responses)
return {
"response": fallback,
"status": "error",
"processing_time": f"{processing_time}ms",
"character": request.char_name
}
# Health check endpoint
@app.get("/health")
async def health():
loaded_models = len(app.state.pipelines) if hasattr(app.state, 'pipelines') else 0
return {
"status": "healthy",
"platform": "CPU",
"loaded_models": loaded_models,
"total_models": len(MODELS),
"optimization": "Character AI CPU-Tuned",
"backend_version": "1.0.0"
}
# Model info endpoint
@app.get("/models")
async def get_models():
return {
"models": [
{
"id": k,
"name": v["name"],
"task": v["task"],
"max_tokens": v["max_tokens"],
"priority": v["priority"],
"cpu_optimized": True,
"character_ai_ready": True
}
for k, v in MODELS.items()
],
"platform": "CPU",
"recommended_for_roleplay": ["distil-gpt-2", "gpt-2", "gpt-neo", "tinny-llama"],
"recommended_for_analysis": ["bert-tinny", "distilbert-base-uncased", "albert-base-v2"]
}
# Configuration endpoint
@app.get("/config")
async def get_config():
return {
"default_situation": "Santai",
"default_location": "Ruang tamu",
"default_char_name": "Sayang",
"default_user_name": "Kamu",
"max_response_length": 300,
"min_response_length": 50,
"supported_languages": ["id", "en"],
"character_templates": list(CHARACTER_TEMPLATES.keys())
}
# Inference endpoint untuk kompatibilitas
@app.post("/inference")
async def inference(request: dict):
"""CPU-Optimized inference endpoint untuk kompatibilitas"""
try:
message = request.get("message", "")
model_path = request.get("model", "Lyon28/Distil_GPT-2")
# Map model path to internal model
model_key = model_path.split("/")[-1].lower().replace("_", "-")
model_mapping = {
"distil-gpt-2": "distil-gpt-2",
"gpt-2-tinny": "gpt-2-tinny",
"bert-tinny": "bert-tinny",
"distilbert-base-uncased": "distilbert-base-uncased",
"albert-base-v2": "albert-base-v2",
"electra-small": "electra-small",
"t5-small": "t5-small",
"gpt-2": "gpt-2",
"tinny-llama": "tinny-llama",
"pythia": "pythia",
"gpt-neo": "gpt-neo"
}
internal_model = model_mapping.get(model_key, "distil-gpt-2")
# Create request
chat_request = ChatRequest(
message=message,
model=internal_model,
situation=request.get("situation", "Santai"),
location=request.get("location", "Ruang tamu"),
char_name=request.get("char_name", "Sayang"),
user_name=request.get("user_name", "Kamu")
)
result = await chat(chat_request)
return {
"result": result["response"],
"status": "success",
"model_used": result["model"],
"processing_time": result.get("processing_time", "0ms"),
"character_info": {
"name": result.get("character", "Character"),
"situation": result.get("situation", "Unknown"),
"location": result.get("location", "Unknown")
}
}
except Exception as e:
print(f"β Inference Error: {e}")
return {
"result": "π Character sedang bersiap, coba lagi sebentar...",
"status": "error"
}
# Run dengan CPU optimizations
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
uvicorn.run(
app,
host="0.0.0.0",
port=port,
log_level="info",
workers=1,
timeout_keep_alive=30,
access_log=False
) |