Spaces:
Running
Running
Update Dockerfile
Browse files- Dockerfile +5 -150
Dockerfile
CHANGED
@@ -1,153 +1,8 @@
|
|
1 |
-
|
2 |
-
from pydantic import BaseModel
|
3 |
-
from transformers import pipeline
|
4 |
-
import torch
|
5 |
-
from fastapi.middleware.cors import CORSMiddleware
|
6 |
-
from typing import Dict, Any
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
title="Lyon28 Model Inference API",
|
11 |
-
description="API untuk mengakses 11 model machine learning",
|
12 |
-
version="1.0.0"
|
13 |
-
)
|
14 |
|
15 |
-
|
16 |
-
app.add_middleware(
|
17 |
-
CORSMiddleware,
|
18 |
-
allow_origins=["*"],
|
19 |
-
allow_credentials=True,
|
20 |
-
allow_methods=["*"],
|
21 |
-
allow_headers=["*"],
|
22 |
-
)
|
23 |
|
24 |
-
|
25 |
-
MODEL_MAP = {
|
26 |
-
"tinny-llama": "Lyon28/Tinny-Llama",
|
27 |
-
"pythia": "Lyon28/Pythia",
|
28 |
-
"bert-tinny": "Lyon28/Bert-Tinny",
|
29 |
-
"albert-base-v2": "Lyon28/Albert-Base-V2",
|
30 |
-
"t5-small": "Lyon28/T5-Small",
|
31 |
-
"gpt-2": "Lyon28/GPT-2",
|
32 |
-
"gpt-neo": "Lyon28/GPT-Neo",
|
33 |
-
"distilbert-base-uncased": "Lyon28/Distilbert-Base-Uncased",
|
34 |
-
"distil-gpt-2": "Lyon28/Distil_GPT-2",
|
35 |
-
"gpt-2-tinny": "Lyon28/GPT-2-Tinny",
|
36 |
-
"electra-small": "Lyon28/Electra-Small"
|
37 |
-
}
|
38 |
-
|
39 |
-
TASK_MAP = {
|
40 |
-
"text-generation": ["gpt-2", "gpt-neo", "distil-gpt-2", "gpt-2-tinny", "tinny-llama", "pythia"],
|
41 |
-
"text-classification": ["bert-tinny", "albert-base-v2", "distilbert-base-uncased", "electra-small"],
|
42 |
-
"text2text-generation": ["t5-small"]
|
43 |
-
}
|
44 |
-
|
45 |
-
class InferenceRequest(BaseModel):
|
46 |
-
text: str
|
47 |
-
max_length: int = 100
|
48 |
-
temperature: float = 0.9
|
49 |
-
top_p: float = 0.95
|
50 |
-
|
51 |
-
# Helper functions
|
52 |
-
def get_task(model_id: str) -> str:
|
53 |
-
for task, models in TASK_MAP.items():
|
54 |
-
if model_id in models:
|
55 |
-
return task
|
56 |
-
return "text-generation"
|
57 |
-
|
58 |
-
# Event startup untuk inisialisasi model
|
59 |
-
@app.on_event("startup")
|
60 |
-
async def load_models():
|
61 |
-
app.state.pipelines = {}
|
62 |
-
print("🟢 Semua model siap digunakan!")
|
63 |
-
|
64 |
-
# Endpoint utama
|
65 |
-
@app.get("/")
|
66 |
-
async def root():
|
67 |
-
return {
|
68 |
-
"message": "Selamat datang di Lyon28 Model API",
|
69 |
-
"endpoints": {
|
70 |
-
"documentation": "/docs",
|
71 |
-
"model_list": "/models",
|
72 |
-
"health_check": "/health",
|
73 |
-
"inference": "/inference/{model_id}"
|
74 |
-
},
|
75 |
-
"total_models": len(MODEL_MAP)
|
76 |
-
}
|
77 |
-
|
78 |
-
# Endpoint untuk list model
|
79 |
-
@app.get("/models")
|
80 |
-
async def list_models():
|
81 |
-
return {
|
82 |
-
"available_models": list(MODEL_MAP.keys()),
|
83 |
-
"total_models": len(MODEL_MAP)
|
84 |
-
}
|
85 |
-
|
86 |
-
# Endpoint health check
|
87 |
-
@app.get("/health")
|
88 |
-
async def health_check():
|
89 |
-
return {
|
90 |
-
"status": "healthy",
|
91 |
-
"gpu_available": torch.cuda.is_available(),
|
92 |
-
"gpu_type": torch.cuda.get_device_name(0) if torch.cuda.is_available() else "CPU-only"
|
93 |
-
}
|
94 |
-
|
95 |
-
# Endpoint inference utama
|
96 |
-
@app.post("/inference/{model_id}")
|
97 |
-
async def model_inference(model_id: str, request: InferenceRequest):
|
98 |
-
try:
|
99 |
-
# Validasi model ID
|
100 |
-
if model_id not in MODEL_MAP:
|
101 |
-
raise HTTPException(
|
102 |
-
status_code=404,
|
103 |
-
detail=f"Model {model_id} tidak ditemukan. Cek /models untuk list model yang tersedia."
|
104 |
-
)
|
105 |
-
|
106 |
-
# Dapatkan task yang sesuai
|
107 |
-
task = get_task(model_id)
|
108 |
-
|
109 |
-
# Load model jika belum ada di memory
|
110 |
-
if model_id not in app.state.pipelines:
|
111 |
-
app.state.pipelines[model_id] = pipeline(
|
112 |
-
task=task,
|
113 |
-
model=MODEL_MAP[model_id],
|
114 |
-
device=0 if torch.cuda.is_available() else -1,
|
115 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
116 |
-
)
|
117 |
-
print(f"✅ Model {model_id} berhasil dimuat!")
|
118 |
-
|
119 |
-
pipe = app.state.pipelines[model_id]
|
120 |
-
|
121 |
-
# Proses berdasarkan task
|
122 |
-
if task == "text-generation":
|
123 |
-
result = pipe(
|
124 |
-
request.text,
|
125 |
-
max_length=request.max_length,
|
126 |
-
temperature=request.temperature,
|
127 |
-
top_p=request.top_p
|
128 |
-
)[0]['generated_text']
|
129 |
-
|
130 |
-
elif task == "text-classification":
|
131 |
-
output = pipe(request.text)[0]
|
132 |
-
result = {
|
133 |
-
"label": output['label'],
|
134 |
-
"confidence": round(output['score'], 4)
|
135 |
-
}
|
136 |
-
|
137 |
-
elif task == "text2text-generation":
|
138 |
-
result = pipe(
|
139 |
-
request.text,
|
140 |
-
max_length=request.max_length
|
141 |
-
)[0]['generated_text']
|
142 |
-
|
143 |
-
return {"result": result}
|
144 |
-
|
145 |
-
except Exception as e:
|
146 |
-
raise HTTPException(
|
147 |
-
status_code=500,
|
148 |
-
detail=f"Error processing request: {str(e)}"
|
149 |
-
)
|
150 |
-
|
151 |
-
if __name__ == "__main__":
|
152 |
-
import uvicorn
|
153 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
+
FROM python:3.9-slim
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
WORKDIR /app
|
4 |
+
COPY . .
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|