File size: 9,413 Bytes
d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 90260b6 d2346a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# app.py
from flask import Flask, jsonify, request
from flask_cors import CORS
from transformers import pipeline
import logging
import torch
import os # Untuk mendapatkan environment variables, misalnya di Hugging Face Spaces
app = Flask(__name__)
CORS(app) # Mengaktifkan CORS untuk mengizinkan permintaan dari frontend Anda
# --- Setup Logging ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Konfigurasi Model dan Informasi ---
# Tambahkan 'hf_model_name' jika nama model di Hugging Face berbeda dari ID yang Anda inginkan.
# Jika nama model di Hugging Face sama, tidak perlu 'hf_model_name'.
model_info = {
"Albert-Base-V2": {"task": "fill-mask", "description": "BERT-based model for masked language modeling"},
"GPT-2": {"task": "text-generation", "description": "GPT-2 model for text generation"},
"Tinny-Llama": {"task": "text-generation", "description": "Lightweight LLaMA model"},
"Electra-Small": {"task": "fill-mask", "description": "Small ELECTRA model"},
"GPT-2-Tinny": {"task": "text-generation", "description": "Tiny GPT-2 variant"},
"Bert-Tinny": {"task": "fill-mask", "description": "Tiny BERT model"},
"Distilbert-Base-Uncased": {"task": "fill-mask", "description": "Distilled BERT model"},
"Pythia": {"task": "text-generation", "description": "Pythia language model"},
"T5-Small": {"task": "text2text-generation", "description": "Small T5 model", "hf_model_name": "t5-small"},
"GPT-Neo": {"task": "text-generation", "description": "GPT-Neo model"},
"Distil-GPT-2": {"task": "text-generation", "description": "Distilled GPT-2 model"}
}
# --- Penyimpanan Model Global (untuk Lazy Loading) ---
models = {}
# --- Fungsi Utility untuk Model Lazy Loading ---
def get_model_pipeline(model_name):
"""
Memuat model hanya jika belum dimuat (lazy loading).
Mengembalikan pipeline model yang diminta.
"""
if model_name not in models:
logger.info(f"Model '{model_name}' belum dimuat. Memuat sekarang...")
if model_name not in model_info:
logger.error(f"Informasi model '{model_name}' tidak ditemukan di model_info.")
raise ValueError(f"Model '{model_name}' tidak dikenal.")
info = model_info[model_name]
try:
# Gunakan 'hf_model_name' jika disediakan, jika tidak, gunakan model_name dengan prefix 'Lyon28/'
hf_model_path = info.get("hf_model_name", f"Lyon28/{model_name}")
# Explicitly set device to "cpu" for CPU-only environments
models[model_name] = pipeline(
info["task"],
model=hf_model_path,
device="cpu", # Penting: Pastikan ini "cpu" jika Anda tidak punya GPU
torch_dtype=torch.float32 # Tetap float32 untuk performa terbaik di CPU
)
logger.info(f"β
Model '{model_name}' (Path: {hf_model_path}) berhasil dimuat.")
except Exception as e:
logger.error(f"β Gagal memuat model '{model_name}' (Path: {hf_model_path}): {str(e)}", exc_info=True)
raise RuntimeError(f"Gagal memuat model: {model_name}. Detail: {str(e)}") from e
return models[model_name]
# --- Rute API ---
@app.route('/')
def home():
"""Endpoint root untuk status API."""
return jsonify({
"message": "Flask API untuk Model Hugging Face",
"status": "online",
"loaded_models_count": len(models),
"available_model_configs": list(model_info.keys()),
"info": "Gunakan /api/models untuk daftar model yang tersedia."
})
@app.route('/api/models', methods=['GET'])
def list_available_models():
"""Mengembalikan daftar semua model yang dikonfigurasi, termasuk status muatan."""
available_models_data = [
{
"id": name,
"name": info["description"],
"task": info["task"],
"status": "loaded" if name in models else "not_loaded", # Menunjukkan apakah sudah dimuat via lazy loading
"endpoint": f"/api/{name}"
}
for name, info in model_info.items()
]
return jsonify({
"total_configured_models": len(model_info),
"currently_loaded_models": len(models),
"models": available_models_data
})
@app.route('/api/<model_id>', methods=['POST'])
def predict_with_model(model_id):
"""
Endpoint utama untuk prediksi model.
Menerima 'inputs' (teks) dan 'parameters' (dictionary) opsional.
"""
logger.info(f"Menerima permintaan untuk model: {model_id}")
if model_id not in model_info:
logger.warning(f"Permintaan untuk model tidak dikenal: {model_id}")
return jsonify({"error": f"Model '{model_id}' tidak dikenal. Lihat /api/models untuk daftar yang tersedia."}), 404
try:
model_pipeline = get_model_pipeline(model_id) # Memuat model jika belum ada
model_task = model_info[model_id]["task"]
data = request.json
inputs = data.get('inputs', '')
parameters = data.get('parameters', {}) # Default ke dictionary kosong jika tidak ada
if not inputs:
return jsonify({"error": "Input 'inputs' tidak boleh kosong."}), 400
logger.info(f"Inferensi: Model='{model_id}', Task='{model_task}', Input='{inputs[:100]}...', Params='{parameters}'")
result = []
# --- Penanganan Parameter dan Inferensi berdasarkan Tipe Tugas ---
if model_task == "text-generation":
# Default parameters for text-generation
gen_params = {
"max_new_tokens": parameters.get("max_new_tokens", 150), # Lebih banyak token untuk roleplay
"temperature": parameters.get("temperature", 0.7),
"do_sample": parameters.get("do_sample", True),
"return_full_text": parameters.get("return_full_text", False), # Sangat penting untuk chatbot
"num_return_sequences": parameters.get("num_return_sequences", 1),
"top_k": parameters.get("top_k", 50),
"top_p": parameters.get("top_p", 0.95),
"repetition_penalty": parameters.get("repetition_penalty", 1.2), # Mencegah pengulangan
}
result = model_pipeline(inputs, **gen_params)
elif model_task == "fill-mask":
mask_params = {
"top_k": parameters.get("top_k", 5)
}
result = model_pipeline(inputs, **mask_params)
elif model_task == "text2text-generation": # Misalnya untuk T5
t2t_params = {
"max_new_tokens": parameters.get("max_new_tokens", 150),
"temperature": parameters.get("temperature", 0.7),
"do_sample": parameters.get("do_sample", True),
}
result = model_pipeline(inputs, **t2t_params)
else:
# Fallback for other tasks or if no specific parameters are needed
result = model_pipeline(inputs, **parameters)
# --- Konsistensi Format Output ---
response_output = {}
if model_task == "text-generation" or model_task == "text2text-generation":
if result and len(result) > 0 and 'generated_text' in result[0]:
response_output['text'] = result[0]['generated_text'].strip()
else:
response_output['text'] = "[Tidak ada teks yang dihasilkan atau format tidak sesuai.]"
elif model_task == "fill-mask":
response_output['predictions'] = [
{"sequence": p.get('sequence', ''), "score": p.get('score', 0.0), "token_str": p.get('token_str', '')}
for p in result
]
else:
# Untuk jenis tugas lain, kembalikan hasil mentah
response_output = result
logger.info(f"Inferensi berhasil untuk '{model_id}'. Output singkat: '{str(response_output)[:200]}'")
return jsonify({"model": model_id, "inputs": inputs, "outputs": response_output})
except ValueError as ve:
# Error yang berasal dari get_model_pipeline atau validasi input
logger.error(f"Validasi atau konfigurasi error untuk model '{model_id}': {str(ve)}")
return jsonify({"error": str(ve), "message": "Kesalahan konfigurasi atau input model."}), 400
except RuntimeError as re:
# Error saat memuat model
logger.error(f"Error runtime saat memuat model '{model_id}': {str(re)}")
return jsonify({"error": str(re), "message": "Model gagal dimuat."}), 503 # Service Unavailable
except Exception as e:
# Catch all other unexpected errors during prediction
logger.error(f"Terjadi kesalahan tak terduga saat memprediksi dengan model '{model_id}': {str(e)}", exc_info=True)
return jsonify({"error": str(e), "message": "Terjadi kesalahan internal server."}), 500
@app.route('/health', methods=['GET'])
def health_check():
"""Endpoint untuk health check."""
return jsonify({"status": "healthy", "loaded_models_count": len(models), "message": "API berfungsi normal."})
# --- Jalankan Aplikasi ---
if __name__ == '__main__':
# Untuk Hugging Face Spaces, port biasanya 7860
# Menggunakan HOST dari environment variable jika tersedia, default ke 0.0.0.0
# Debug=False untuk produksi
app.run(host=os.getenv('HOST', '0.0.0.0'), port=int(os.getenv('PORT', 7860)), debug=False)
|