Update app.py
Browse files
app.py
CHANGED
@@ -125,7 +125,7 @@ def list_available_models():
|
|
125 |
def predict_with_model(model_id):
|
126 |
"""
|
127 |
Endpoint utama untuk prediksi model.
|
128 |
-
Menerima 'inputs' (teks
|
129 |
"""
|
130 |
logger.info(f"Menerima permintaan untuk model: {model_id}")
|
131 |
if model_id not in model_info:
|
@@ -137,51 +137,49 @@ def predict_with_model(model_id):
|
|
137 |
model_task = model_info[model_id]["task"]
|
138 |
|
139 |
data = request.json
|
140 |
-
|
141 |
-
|
142 |
-
parameters = data.get('parameters', {})
|
143 |
|
144 |
-
if not
|
145 |
-
return jsonify({"error": "Input 'inputs'
|
146 |
|
147 |
-
logger.info(f"Inferensi: Model='{model_id}', Task='{model_task}',
|
148 |
|
149 |
result = []
|
150 |
# --- Penanganan Parameter dan Inferensi berdasarkan Tipe Tugas ---
|
151 |
if model_task == "text-generation":
|
|
|
152 |
gen_params = {
|
153 |
-
"max_new_tokens": parameters.get("max_new_tokens", 150),
|
154 |
"temperature": parameters.get("temperature", 0.7),
|
155 |
"do_sample": parameters.get("do_sample", True),
|
156 |
"return_full_text": parameters.get("return_full_text", False), # Sangat penting untuk chatbot
|
157 |
"num_return_sequences": parameters.get("num_return_sequences", 1),
|
158 |
"top_k": parameters.get("top_k", 50),
|
159 |
"top_p": parameters.get("top_p", 0.95),
|
160 |
-
"repetition_penalty": parameters.get("repetition_penalty", 1.2),
|
161 |
}
|
162 |
-
|
163 |
-
result = model_pipeline(full_prompt_string_from_frontend, **gen_params)
|
164 |
|
165 |
elif model_task == "fill-mask":
|
166 |
mask_params = {
|
167 |
"top_k": parameters.get("top_k", 5)
|
168 |
}
|
169 |
-
|
170 |
-
# Anda perlu memastikan frontend tidak mengirim prompt kompleks ke fill-mask model
|
171 |
-
result = model_pipeline(full_prompt_string_from_frontend, **mask_params)
|
172 |
|
173 |
-
elif model_task == "text2text-generation":
|
174 |
t2t_params = {
|
175 |
"max_new_tokens": parameters.get("max_new_tokens", 150),
|
176 |
"temperature": parameters.get("temperature", 0.7),
|
177 |
"do_sample": parameters.get("do_sample", True),
|
178 |
}
|
179 |
-
result = model_pipeline(
|
180 |
|
181 |
else:
|
182 |
-
|
|
|
183 |
|
184 |
-
# --- Konsistensi Format Output
|
185 |
response_output = {}
|
186 |
if model_task == "text-generation" or model_task == "text2text-generation":
|
187 |
if result and len(result) > 0 and 'generated_text' in result[0]:
|
@@ -194,18 +192,22 @@ def predict_with_model(model_id):
|
|
194 |
for p in result
|
195 |
]
|
196 |
else:
|
|
|
197 |
response_output = result
|
198 |
|
199 |
logger.info(f"Inferensi berhasil untuk '{model_id}'. Output singkat: '{str(response_output)[:200]}'")
|
200 |
-
return jsonify({"model": model_id, "inputs":
|
201 |
|
202 |
except ValueError as ve:
|
|
|
203 |
logger.error(f"Validasi atau konfigurasi error untuk model '{model_id}': {str(ve)}")
|
204 |
return jsonify({"error": str(ve), "message": "Kesalahan konfigurasi atau input model."}), 400
|
205 |
except RuntimeError as re:
|
|
|
206 |
logger.error(f"Error runtime saat memuat model '{model_id}': {str(re)}")
|
207 |
-
return jsonify({"error": str(re), "message": "Model gagal dimuat."}), 503
|
208 |
except Exception as e:
|
|
|
209 |
logger.error(f"Terjadi kesalahan tak terduga saat memprediksi dengan model '{model_id}': {str(e)}", exc_info=True)
|
210 |
return jsonify({"error": str(e), "message": "Terjadi kesalahan internal server."}), 500
|
211 |
|
@@ -219,4 +221,4 @@ if __name__ == '__main__':
|
|
219 |
# Untuk Hugging Face Spaces, port biasanya 7860
|
220 |
# Menggunakan HOST dari environment variable jika tersedia, default ke 0.0.0.0
|
221 |
# Debug=False untuk produksi
|
222 |
-
app.run(host=os.getenv('HOST', '0.0.0.0'), port=int(os.getenv('PORT', 7860)), debug=False)
|
|
|
125 |
def predict_with_model(model_id):
|
126 |
"""
|
127 |
Endpoint utama untuk prediksi model.
|
128 |
+
Menerima 'inputs' (teks) dan 'parameters' (dictionary) opsional.
|
129 |
"""
|
130 |
logger.info(f"Menerima permintaan untuk model: {model_id}")
|
131 |
if model_id not in model_info:
|
|
|
137 |
model_task = model_info[model_id]["task"]
|
138 |
|
139 |
data = request.json
|
140 |
+
inputs = data.get('inputs', '')
|
141 |
+
parameters = data.get('parameters', {}) # Default ke dictionary kosong jika tidak ada
|
|
|
142 |
|
143 |
+
if not inputs:
|
144 |
+
return jsonify({"error": "Input 'inputs' tidak boleh kosong."}), 400
|
145 |
|
146 |
+
logger.info(f"Inferensi: Model='{model_id}', Task='{model_task}', Input='{inputs[:100]}...', Params='{parameters}'")
|
147 |
|
148 |
result = []
|
149 |
# --- Penanganan Parameter dan Inferensi berdasarkan Tipe Tugas ---
|
150 |
if model_task == "text-generation":
|
151 |
+
# Default parameters for text-generation
|
152 |
gen_params = {
|
153 |
+
"max_new_tokens": parameters.get("max_new_tokens", 150), # Lebih banyak token untuk roleplay
|
154 |
"temperature": parameters.get("temperature", 0.7),
|
155 |
"do_sample": parameters.get("do_sample", True),
|
156 |
"return_full_text": parameters.get("return_full_text", False), # Sangat penting untuk chatbot
|
157 |
"num_return_sequences": parameters.get("num_return_sequences", 1),
|
158 |
"top_k": parameters.get("top_k", 50),
|
159 |
"top_p": parameters.get("top_p", 0.95),
|
160 |
+
"repetition_penalty": parameters.get("repetition_penalty", 1.2), # Mencegah pengulangan
|
161 |
}
|
162 |
+
result = model_pipeline(inputs, **gen_params)
|
|
|
163 |
|
164 |
elif model_task == "fill-mask":
|
165 |
mask_params = {
|
166 |
"top_k": parameters.get("top_k", 5)
|
167 |
}
|
168 |
+
result = model_pipeline(inputs, **mask_params)
|
|
|
|
|
169 |
|
170 |
+
elif model_task == "text2text-generation": # Misalnya untuk T5
|
171 |
t2t_params = {
|
172 |
"max_new_tokens": parameters.get("max_new_tokens", 150),
|
173 |
"temperature": parameters.get("temperature", 0.7),
|
174 |
"do_sample": parameters.get("do_sample", True),
|
175 |
}
|
176 |
+
result = model_pipeline(inputs, **t2t_params)
|
177 |
|
178 |
else:
|
179 |
+
# Fallback for other tasks or if no specific parameters are needed
|
180 |
+
result = model_pipeline(inputs, **parameters)
|
181 |
|
182 |
+
# --- Konsistensi Format Output ---
|
183 |
response_output = {}
|
184 |
if model_task == "text-generation" or model_task == "text2text-generation":
|
185 |
if result and len(result) > 0 and 'generated_text' in result[0]:
|
|
|
192 |
for p in result
|
193 |
]
|
194 |
else:
|
195 |
+
# Untuk jenis tugas lain, kembalikan hasil mentah
|
196 |
response_output = result
|
197 |
|
198 |
logger.info(f"Inferensi berhasil untuk '{model_id}'. Output singkat: '{str(response_output)[:200]}'")
|
199 |
+
return jsonify({"model": model_id, "inputs": inputs, "outputs": response_output})
|
200 |
|
201 |
except ValueError as ve:
|
202 |
+
# Error yang berasal dari get_model_pipeline atau validasi input
|
203 |
logger.error(f"Validasi atau konfigurasi error untuk model '{model_id}': {str(ve)}")
|
204 |
return jsonify({"error": str(ve), "message": "Kesalahan konfigurasi atau input model."}), 400
|
205 |
except RuntimeError as re:
|
206 |
+
# Error saat memuat model
|
207 |
logger.error(f"Error runtime saat memuat model '{model_id}': {str(re)}")
|
208 |
+
return jsonify({"error": str(re), "message": "Model gagal dimuat."}), 503 # Service Unavailable
|
209 |
except Exception as e:
|
210 |
+
# Catch all other unexpected errors during prediction
|
211 |
logger.error(f"Terjadi kesalahan tak terduga saat memprediksi dengan model '{model_id}': {str(e)}", exc_info=True)
|
212 |
return jsonify({"error": str(e), "message": "Terjadi kesalahan internal server."}), 500
|
213 |
|
|
|
221 |
# Untuk Hugging Face Spaces, port biasanya 7860
|
222 |
# Menggunakan HOST dari environment variable jika tersedia, default ke 0.0.0.0
|
223 |
# Debug=False untuk produksi
|
224 |
+
app.run(host=os.getenv('HOST', '0.0.0.0'), port=int(os.getenv('PORT', 7860)), debug=False)
|