Lyte's picture
Update app.py
49104b6 verified
import os
import gradio as gr
import copy
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
# Initialize Llama model from Hugging Face
llm = Llama(
model_path=hf_hub_download(
repo_id=os.environ.get("REPO_ID", "mradermacher/Atlas-Chat-2B-GGUF"),
filename=os.environ.get("MODEL_FILE", "Atlas-Chat-2B.Q8_0.gguf"),
),
n_ctx=2048,
)
# Training prompt format for Atlas-Chat style conversation
training_prompt = """<start_of_turn>user
{}<end_of_turn>
<start_of_turn>model
{}<end_of_turn>"""
EOS_TOKEN = "<end_of_turn>"
# Function to generate the text response based on conversation history
def generate_text(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
top_p,
):
temp = ""
input_prompt = ""
# Loop through the conversation history and add each turn to the prompt
for user_input, assistant_response in history:
input_prompt += training_prompt.format(user_input, assistant_response)
# Add the current message to the prompt
input_prompt += training_prompt.format(message, "")
# Generate the output using the model
output = llm(
input_prompt,
temperature=temperature,
top_p=top_p,
top_k=40,
repeat_penalty=1.1,
max_tokens=max_tokens,
stop=[
EOS_TOKEN,
"<|endoftext|>"
],
stream=True,
)
# Stream and yield the modelโ€™s output
for out in output:
stream = copy.deepcopy(out)
temp += stream["choices"][0]["text"]
yield temp
# Define the Gradio interface
demo = gr.ChatInterface(
generate_text,
title="using Atlas-Chat-2B | I had to switch to the 2B model because the 9B was too much for this space!",
description="Running LLM with https://github.com/abetlen/llama-cpp-python",
examples=[
['How to setup a human base on Mars? Give short answer.'],
['Explain theory of relativity to me like Iโ€™m 8 years old.'],
['ุดูƒูˆู† ู„ูŠ ุตู†ุนูƒุŸ'],
['ุฃุดู†ูˆ ูƒุงูŠู…ูŠูŠุฒ ุงู„ู…ู…ู„ูƒุฉ ุงู„ู…ุบุฑุจูŠุฉ'],
['ุดู†ูˆ ูƒูŠุชุณู…ู‰ ุงู„ู…ู†ุชุฎุจ ุงู„ู…ุบุฑุจูŠุŸ']
],
cache_examples=False,
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear",
additional_inputs=[
gr.Slider(minimum=1, maximum=768, value=256, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
# Launch the Gradio demo interface
if __name__ == "__main__":
demo.launch()