File size: 5,122 Bytes
02a2d80
 
 
 
 
 
 
 
408d87c
02a2d80
 
 
 
 
21bf972
 
 
 
408d87c
21bf972
 
 
408d87c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02a2d80
 
 
 
408d87c
 
 
 
 
 
 
 
02a2d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9258a5d
02a2d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0af9b03
02a2d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import time
import streamlit as st
st.set_page_config(page_title="چت بات ارتش", page_icon="🪖", layout="wide")
st.markdown("""
    <style>
    .main {
        background-color: #f4f6f7;
    }

    .stChatMessage {
        background-color: #e8f0fe;
        border-radius: 12px;
        padding: 10px;
        margin-bottom: 10px;
        direction: rtl;
        text-align: right;
        font-family: 'Tahoma', sans-serif;
    }

    .stMarkdown, .stTextInput, .stTextArea {
        direction: rtl !important;
        text-align: right !important;
        font-family: 'Tahoma', sans-serif;
    }

    .center-header {
        display: flex;
        flex-direction: column;
        align-items: center;
        justify-content: center;
        margin-bottom: 30px;
    }

    .center-header img {
        width: 150px; /* اندازه بزرگ‌تر برای لوگو */
        height: auto;
        border-radius: 20px;
        box-shadow: 0 4px 12px rgba(0,0,0,0.15);
        margin-bottom: 10px;
    }

    .center-header h1 {
        font-size: 28px;
        font-weight: bold;
        color: #2c3e50;
        font-family: 'Tahoma', sans-serif;
        text-align: center;
        margin: 0;
    }
    </style>
""", unsafe_allow_html=True)

st.markdown("""
    <div class="center-header">
        <img src="https://your-logo-url.com/logo.png" alt="لوگو">
        <h1>اسم اپلیکیشن یا شرکت شما</h1>
    </div>
""", unsafe_allow_html=True)


from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from typing import List
from together import Together

class TogetherEmbeddings(Embeddings):
    def __init__(self, model_name: str, api_key: str):
        self.model_name = model_name
        self.client = Together(api_key=api_key)

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        response = self.client.embeddings.create(
            model=self.model_name,
            input=texts
        )
        return [item.embedding for item in response.data]

    def embed_query(self, text: str) -> List[float]:
        return self.embed_documents([text])[0]

@st.cache_resource
def get_pdf_index():
    with st.spinner('لطفاً لحظه‌ای صبر کنید...'):
        pdf_reader = [PyPDFLoader('test1.pdf')]
        embeddings = TogetherEmbeddings(
            model_name="togethercomputer/m2-bert-80M-8k-retrieval",
            api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
        )
        return VectorstoreIndexCreator(
            embedding=embeddings,
            text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
        ).from_loaders(pdf_reader)

index = get_pdf_index()
llm = ChatOpenAI(
    base_url="https://api.together.xyz/v1",
    api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
    model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)
chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type='stuff',
    retriever=index.vectorstore.as_retriever(),
    input_key='question'
)

# --- UI زیباسازی ---

col1, col2 = st.columns([1, 10])
with col1:
    st.image("army.png", width=70)
with col2:
    st.title('🤖 چت‌بات هوشمند ارتش')

if 'messages' not in st.session_state:
    st.session_state.messages = []

if 'pending_prompt' not in st.session_state:
    st.session_state.pending_prompt = None

for message in st.session_state.messages:
    with st.chat_message(message['role']):
        st.markdown(f"🗨️ {message['content']}", unsafe_allow_html=True)

prompt = st.chat_input('چطور می‌تونم کمک کنم؟')

if prompt:
    st.session_state.messages.append({'role': 'user', 'content': prompt})
    st.session_state.pending_prompt = prompt
    st.rerun()

if st.session_state.pending_prompt:
    with st.chat_message('ai'):
        thinking_placeholder = st.empty()
        thinking_placeholder.markdown("🤖 در حال فکر کردن...")

        response = chain.run(f'پاسخ را فقط به زبان فارسی بده. سوال: {st.session_state.pending_prompt}')
        helpful_answer = response.split("Helpful Answer:")[-1]
        if not helpful_answer.strip():
            helpful_answer = "اطلاعات دقیقی در دسترس نیست، اما می‌توانم به شما کمک کنم تا از منابع دیگر بررسی کنید."

        thinking_placeholder.empty()
        full_response = ""
        placeholder = st.empty()
        for chunk in helpful_answer.split():
            full_response += chunk + " "
            placeholder.markdown(full_response + "▌")
            time.sleep(0.03)

        placeholder.markdown(full_response)
        st.session_state.messages.append({'role': 'ai', 'content': full_response})
        st.session_state.pending_prompt = None