File size: 4,630 Bytes
02a2d80
 
80d2c6b
 
 
 
 
 
 
 
 
 
e668a9a
80d2c6b
02a2d80
 
 
80d2c6b
02a2d80
408d87c
02a2d80
80d2c6b
02a2d80
80d2c6b
 
21bf972
 
 
 
408d87c
80d2c6b
21bf972
 
408d87c
 
 
80d2c6b
408d87c
 
 
 
80d2c6b
 
408d87c
 
80d2c6b
 
a5b2194
80d2c6b
 
408d87c
 
80d2c6b
 
408d87c
 
 
02a2d80
 
 
 
408d87c
80d2c6b
e668a9a
80d2c6b
408d87c
 
 
02a2d80
 
 
 
 
 
80d2c6b
02a2d80
 
 
 
 
 
 
80d2c6b
 
02a2d80
 
 
 
 
 
 
80d2c6b
02a2d80
 
80d2c6b
02a2d80
 
 
 
 
80d2c6b
02a2d80
 
 
 
 
 
 
 
 
 
 
 
 
80d2c6b
 
 
02a2d80
80d2c6b
02a2d80
 
 
 
 
 
 
 
80d2c6b
 
02a2d80
befc313
80d2c6b
 
 
02a2d80
80d2c6b
02a2d80
 
80d2c6b
 
02a2d80
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import time
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from typing import List
from together import Together

st.set_page_config(page_title="چت‌ بات ارتش", page_icon="🪖", layout="wide")

st.markdown("""
    <style>
    .main {
        background-color: #f9f9f9;
    }

    .stChatMessage {
        background-color: #e0f7fa;
        border-radius: 12px;
        padding: 12px;
        margin-bottom: 12px;
        direction: rtl;
        text-align: right;
        font-family: 'Tahoma', sans-serif;
    }

    .stMarkdown, .stTextInput, .stTextArea, .stButton {
        direction: rtl !important;
        text-align: right !important;
        font-family: 'Tahoma', sans-serif;
    }

    .header-container {
        display: flex;
        flex-direction: column;
        align-items: center;
        justify-content: center;
        margin-top: 30px;
        margin-bottom: 40px;
    }

    .header-container img {
        width: 140px;
        border-radius: 15px;
        margin-bottom: 12px;
        box-shadow: 0 4px 15px rgba(0,0,0,0.2);
    }

    .header-container h1 {
        font-size: 36px;
        color: #2c3e50;
        font-family: 'Tahoma', sans-serif;
        margin: 0;
    }
    </style>
""", unsafe_allow_html=True)

st.markdown("""
    <div class="header-container">
        <img src="army.png" alt="لوگو">
        <h1>هوش مصنوعی توانا</h1>
    </div>
""", unsafe_allow_html=True)

class TogetherEmbeddings(Embeddings):
    def __init__(self, model_name: str, api_key: str):
        self.model_name = model_name
        self.client = Together(api_key=api_key)

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        response = self.client.embeddings.create(model=self.model_name, input=texts)
        return [item.embedding for item in response.data]

    def embed_query(self, text: str) -> List[float]:
        return self.embed_documents([text])[0]

@st.cache_resource
def get_pdf_index():
    with st.spinner('📄 در حال پردازش فایل PDF...'):
        loader = [PyPDFLoader('test1.pdf')]
        embeddings = TogetherEmbeddings(
            model_name="togethercomputer/m2-bert-80M-8k-retrieval",
            api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
        )
        return VectorstoreIndexCreator(
            embedding=embeddings,
            text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
        ).from_loaders(loader)

index = get_pdf_index()

llm = ChatOpenAI(
    base_url="https://api.together.xyz/v1",
    api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
    model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)

chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type='stuff',
    retriever=index.vectorstore.as_retriever(),
    input_key='question'
)

if 'messages' not in st.session_state:
    st.session_state.messages = []

if 'pending_prompt' not in st.session_state:
    st.session_state.pending_prompt = None

for msg in st.session_state.messages:
    with st.chat_message(msg['role']):
        st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)

prompt = st.chat_input("چطور می‌تونم کمک کنم؟")

if prompt:
    st.session_state.messages.append({'role': 'user', 'content': prompt})
    st.session_state.pending_prompt = prompt
    st.rerun()

if st.session_state.pending_prompt:
    with st.chat_message('ai'):
        thinking = st.empty()
        thinking.markdown("🤖 در حال فکر کردن...")

        response = chain.run(f'پاسخ را فقط به زبان فارسی جواب بده. سوال: {st.session_state.pending_prompt}')
        answer = response.split("Helpful Answer:")[-1].strip()
        if not answer:
            answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."

        thinking.empty()
        full_response = ""
        placeholder = st.empty()
        for word in answer.split():
            full_response += word + " "
            placeholder.markdown(full_response + "▌")
            time.sleep(0.03)

        placeholder.markdown(full_response)
        st.session_state.messages.append({'role': 'ai', 'content': full_response})
        st.session_state.pending_prompt = None