File size: 3,947 Bytes
02a2d80 c16938a 8a8d9dd 75b7311 11646cc 11503ab 11646cc 11503ab c16938a 49c2234 c16938a 446ad2e c16938a 446ad2e c16938a 446ad2e c16938a 446ad2e c16938a 446ad2e c16938a 446ad2e c16938a 446ad2e c16938a 446ad2e c16938a 2bb543a c16938a 21bd98b 11646cc 755689d c16938a 11646cc c16938a 11646cc 597f25d c16938a 02a2d80 c16938a 80d2c6b 02a2d80 c16938a 02a2d80 26608f4 11646cc 26608f4 c16938a 11646cc 7fb2b42 11646cc 02a2d80 26608f4 33aae2c 7fb2b42 26608f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import streamlit as st
import time
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_together import TogetherEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
# --- 📄 ساخت امبدینگها با batch 50 تایی
def batch_embed(texts, embeddings_model, batch_size=50):
all_embeddings = []
for i in range(0, len(texts), batch_size):
batch = texts[i:i+batch_size]
embs = embeddings_model.embed_documents([doc.page_content for doc in batch])
all_embeddings.extend(embs)
return all_embeddings
@st.cache_resource
def load_chunks_and_embeddings():
pdf_loader = PyPDFLoader('test1.pdf')
pages = pdf_loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
docs = text_splitter.split_documents(pages)
embeddings = TogetherEmbeddings(
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
)
vectorstore = FAISS.from_documents([], embedding=embeddings) # اول خالی
# پروگرس بار
progress = st.progress(0, text="🔄 در حال پردازش چانکها...")
total = len(docs)
batch_size = 50
for i in range(0, total, batch_size):
batch_docs = docs[i:i+batch_size]
embeddings_batch = embeddings.embed_documents([doc.page_content for doc in batch_docs])
vectorstore.add_embeddings(embeddings_batch, batch_docs)
progress.progress(min((i+batch_size)/total, 1.0))
progress.empty()
return vectorstore
# --- 🛠️ آماده کردن دیتابیس
with st.spinner("📚 در حال بارگذاری فایل و ساخت امبدینگها... لطفا صبور باشید"):
vectorstore = load_chunks_and_embeddings()
# --- 🤖 آماده سازی مدل LLM
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
model="meta-llama/Llama-3-70B-Instruct-Turbo-Free"
)
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 10})
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type='stuff',
retriever=retriever,
input_key='question'
)
# --- 💬 چت بات
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
st.title("📄🤖 دستیار PDF شما")
# نمایش تاریخچه گفتگو
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
prompt = st.chat_input("سوالی از PDF داری؟")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن...")
# اجرای جستجو در ایندکس
response = chain.run(f'فقط به زبان فارسی جواب بده. سوال: {st.session_state.pending_prompt}')
answer = response.split("Helpful Answer:")[-1].strip()
if not answer:
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
thinking.empty()
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
|