File size: 6,249 Bytes
02a2d80
 
80d2c6b
 
 
 
 
 
 
 
 
3c0b52c
386d3ca
 
0a9c62d
cdbe11c
c28d5e0
3962050
 
 
096dd9d
80d2c6b
c28d5e0
 
02a2d80
abfcbe7
c28d5e0
abfcbe7
 
 
c28d5e0
 
 
abfcbe7
 
c28d5e0
 
abfcbe7
 
02a2d80
abfcbe7
 
 
 
c28d5e0
 
abfcbe7
 
21bf972
 
abfcbe7
c28d5e0
 
abfcbe7
 
 
 
 
 
c28d5e0
 
abfcbe7
c28d5e0
 
abfcbe7
 
 
 
 
 
 
c28d5e0
 
abfcbe7
408d87c
 
abfcbe7
c28d5e0
 
abfcbe7
 
 
c28d5e0
 
 
 
 
02a2d80
 
 
c28d5e0
 
 
 
 
 
 
 
abfcbe7
949f4c3
408d87c
abfcbe7
096dd9d
abfcbe7
408d87c
 
3962050
 
d17960b
 
811174a
 
386d3ca
 
02a2d80
 
811174a
 
 
 
 
 
 
02a2d80
 
 
 
 
eef506a
 
0a9c62d
 
 
02a2d80
80d2c6b
38908cd
 
 
 
02a2d80
80d2c6b
02a2d80
 
 
 
 
 
 
 
 
 
 
 
 
80d2c6b
 
 
02a2d80
80d2c6b
02a2d80
 
 
 
 
 
 
 
80d2c6b
 
02a2d80
b92896a
80d2c6b
 
 
02a2d80
80d2c6b
02a2d80
 
80d2c6b
 
02a2d80
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import time
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from typing import List
from together import Together
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModel
import torch
from langchain_community.embeddings import HuggingFaceInstructEmbeddings


import streamlit as st
from PIL import Image

st.set_page_config(page_title="چت‌ بات توانا", page_icon="🪖", layout="wide")

# استایل
st.markdown("""
    <style>
    @import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
    html, body, [class*="css"] {
        font-family: 'Vazirmatn', Tahoma, sans-serif;
        direction: rtl;
        text-align: right;
    }
    .stApp {
        background: url("military_bg.jpeg") no-repeat center center fixed;
        background-size: cover;
        backdrop-filter: blur(2px);
    }
    .stChatMessage {
        background-color: rgba(255,255,255,0.8);
        border: 1px solid #4e8a3e;
        border-radius: 12px;
        padding: 16px;
        margin-bottom: 15px;
        box-shadow: 0 4px 10px rgba(0,0,0,0.2);
        animation: fadeIn 0.4s ease-in-out;
    }
    .stTextInput > div > input, .stTextArea textarea {
        background-color: rgba(255,255,255,0.9) !important;
        border-radius: 8px !important;
        direction: rtl;
        text-align: right;
        font-family: 'Vazirmatn', Tahoma;
    }
    .stButton>button {
        background-color: #4e8a3e !important;
        color: white !important;
        font-weight: bold;
        border-radius: 10px;
        padding: 8px 20px;
        transition: 0.3s;
    }
    .stButton>button:hover {
        background-color: #3c6d30 !important;
    }
    .header-text {
        text-align: center;
        margin-top: 20px;
        margin-bottom: 40px;
        background-color: rgba(255, 255, 255, 0.75);
        padding: 20px;
        border-radius: 20px;
        box-shadow: 0 4px 12px rgba(0,0,0,0.2);
    }
    .header-text h1 {
        font-size: 42px;
        color: #2c3e50;
        margin: 0;
        font-weight: bold;
    }
    .subtitle {
        font-size: 18px;
        color: #34495e;
        margin-top: 8px;
    }
    @keyframes fadeIn {
        from { opacity: 0; transform: translateY(10px); }
        to { opacity: 1; transform: translateY(0); }
    }
    </style>
""", unsafe_allow_html=True)

# لوگو در وسط با columns
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
    try:
        image = Image.open("army.png")
        st.image(image, width=240)
    except FileNotFoundError:
        st.error("📁 فایل 'army.png' پیدا نشد. مطمئن شو کنار فایل اصلی Streamlit هست.")

# تیتر
st.markdown("""
    <div class="header-text">
        <h1>چت‌ بات توانا</h1>
        <div class="subtitle">دستیار هوشمند برای تصمیم‌گیری در میدان نبرد</div>
    </div>
""", unsafe_allow_html=True)


from transformers import AutoTokenizer, AutoModel  

class HuggingFaceEmbeddings(Embeddings):
    def __init__(self, model_name: str):
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        embeddings = []
        for text in texts:
            inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True)
            with torch.no_grad():
                outputs = self.model(**inputs)
            embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().tolist())
        return embeddings

    def embed_query(self, text: str) -> List[float]:
        return self.embed_documents([text])[0]

@st.cache_resource
def get_pdf_text(pdf_docs="test1.pdf"):
  loader = PyPDFLoader('test1.pdf')
  embeddings = HuggingFaceInstructEmbeddings(model_name="SajjadAyoubi/xlm-roberta-large-fa-qa")
  index  = VectorstoreIndexCreator( embedding=embeddings, text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)).from_loaders(pdf_reader)
  return index
index = get_pdf_index()

llm = ChatOpenAI(
    base_url="https://api.together.xyz/v1",
    api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
    model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)

chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type='stuff',
    retriever=index.vectorstore.as_retriever(),
    input_key='question'
)

if 'messages' not in st.session_state:
    st.session_state.messages = []

if 'pending_prompt' not in st.session_state:
    st.session_state.pending_prompt = None

for msg in st.session_state.messages:
    with st.chat_message(msg['role']):
        st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)

prompt = st.chat_input("چطور می‌تونم کمک کنم؟")

if prompt:
    st.session_state.messages.append({'role': 'user', 'content': prompt})
    st.session_state.pending_prompt = prompt
    st.rerun()

if st.session_state.pending_prompt:
    with st.chat_message('ai'):
        thinking = st.empty()
        thinking.markdown("🤖 در حال فکر کردن...")

        response = chain.run(f'لطفاً فقط به زبان فارسی پاسخ بده: {st.session_state.pending_prompt}')
        answer = response.split("Helpful Answer:")[-1].strip()
        if not answer:
            answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."

        thinking.empty()
        full_response = ""
        placeholder = st.empty()
        for word in answer.split():
            full_response += word + " "
            placeholder.markdown(full_response + "▌")
            time.sleep(0.03)

        placeholder.markdown(full_response)
        st.session_state.messages.append({'role': 'ai', 'content': full_response})
        st.session_state.pending_prompt = None