army / app.py
M17idd's picture
Update app.py
38908cd
raw
history blame
4.69 kB
import time
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from typing import List
from together import Together
from langchain.embeddings import HuggingFaceEmbeddings
st.set_page_config(page_title="چت‌ بات ارتش", page_icon="🪖", layout="wide")
st.markdown("""
<style>
.main {
background-color: #f9f9f9;
}
.stChatMessage {
background-color: #e0f7fa;
border-radius: 12px;
padding: 12px;
margin-bottom: 12px;
direction: rtl;
text-align: right;
font-family: 'Tahoma', sans-serif;
}
.stMarkdown, .stTextInput, .stTextArea, .stButton {
direction: rtl !important;
text-align: right !important;
font-family: 'Tahoma', sans-serif;
}
.header-container {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
margin-top: 30px;
margin-bottom: 40px;
}
.header-container img {
width: 140px;
border-radius: 15px;
margin-bottom: 12px;
box-shadow: 0 4px 15px rgba(0,0,0,0.2);
}
.header-container h1 {
font-size: 36px;
color: #2c3e50;
font-family: 'Tahoma', sans-serif;
margin: 0;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<div class="header-container">
<img src="army.png" alt="لوگو">
<h1>هوش مصنوعی توانا</h1>
</div>
""", unsafe_allow_html=True)
class TogetherEmbeddings(Embeddings):
def __init__(self, model_name: str, api_key: str):
self.model_name = model_name
self.client = Together(api_key=api_key)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
response = self.client.embeddings.create(model=self.model_name, input=texts)
return [item.embedding for item in response.data]
def embed_query(self, text: str) -> List[float]:
return self.embed_documents([text])[0]
@st.cache_resource
def get_pdf_index():
with st.spinner('📄 در حال پردازش فایل PDF...'):
loader = [PyPDFLoader('test1.pdf')]
embeddings = TogetherEmbeddings(
model_name="togethercomputer/m2-bert-80M-8k-retrieval",
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
)
return VectorstoreIndexCreator(
embedding=embeddings,
text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
).from_loaders(loader)
index = get_pdf_index()
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type='stuff',
retriever=index.vectorstore.as_retriever(),
input_key='question'
)
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
prompt = st.chat_input("چطور می‌تونم کمک کنم؟")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن...")
response = chain.run(f'پاسخ را فقط به زبان فارسی جواب بده. سوال: {st.session_state.pending_prompt}')
answer = response.split("Helpful Answer:")[-1].strip()
if not answer:
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
thinking.empty()
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None