Update app.py
Browse files
app.py
CHANGED
@@ -16,6 +16,8 @@ import faiss
|
|
16 |
from langchain.indexes import VectorstoreIndexCreator
|
17 |
from langchain.vectorstores import FAISS
|
18 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
|
|
|
|
19 |
|
20 |
|
21 |
# ----------------- تنظیمات صفحه -----------------
|
@@ -99,24 +101,15 @@ st.markdown("""
|
|
99 |
</div>
|
100 |
""", unsafe_allow_html=True)
|
101 |
|
102 |
-
# ----------------- لود PDF و ساخت ایندکس -----------------
|
103 |
-
|
104 |
# ----------------- لود PDF و ساخت ایندکس -----------------
|
105 |
@st.cache_resource
|
106 |
def get_pdf_index():
|
107 |
with st.spinner('📄 در حال پردازش فایل PDF...'):
|
108 |
-
|
109 |
-
|
110 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=128)
|
111 |
-
|
112 |
-
embedding_function = SentenceTransformer("togethercomputer/m2-bert-80M-8k-retrieval", trust_remote_code=True)
|
113 |
-
|
114 |
-
embedding = SentenceTransformerEmbeddings(model=embedding_function)
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
).from_loaders(loader)
|
120 |
|
121 |
# ----------------- بارگذاری دیتا -----------------
|
122 |
index = get_pdf_index()
|
|
|
16 |
from langchain.indexes import VectorstoreIndexCreator
|
17 |
from langchain.vectorstores import FAISS
|
18 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
19 |
+
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
20 |
+
|
21 |
|
22 |
|
23 |
# ----------------- تنظیمات صفحه -----------------
|
|
|
101 |
</div>
|
102 |
""", unsafe_allow_html=True)
|
103 |
|
|
|
|
|
104 |
# ----------------- لود PDF و ساخت ایندکس -----------------
|
105 |
@st.cache_resource
|
106 |
def get_pdf_index():
|
107 |
with st.spinner('📄 در حال پردازش فایل PDF...'):
|
108 |
+
pdf_reader = PyPDFLoader('test1.pdf')
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name="togethercomputer/m2-bert-80M-8k-retrieval", trust_remote_code=True)
|
111 |
+
index = VectorstoreIndexCreator( embedding=embeddings, text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=128)).from_loaders(pdf_reader)
|
112 |
+
return index
|
|
|
113 |
|
114 |
# ----------------- بارگذاری دیتا -----------------
|
115 |
index = get_pdf_index()
|