Update app.py
Browse files
app.py
CHANGED
|
@@ -13,6 +13,7 @@ from typing import List
|
|
| 13 |
from pydantic import Field
|
| 14 |
from sentence_transformers import SentenceTransformer
|
| 15 |
import numpy as np
|
|
|
|
| 16 |
|
| 17 |
# ----------------- تنظیمات صفحه -----------------
|
| 18 |
st.set_page_config(page_title="چت بات توانا", page_icon="🪖", layout="wide")
|
|
@@ -95,11 +96,6 @@ st.markdown("""
|
|
| 95 |
</div>
|
| 96 |
""", unsafe_allow_html=True)
|
| 97 |
|
| 98 |
-
# ----------------- بارگذاری مدل FarsiBERT -----------------
|
| 99 |
-
# model_name = "HooshvareLab/bert-fa-zwnj-base"
|
| 100 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 101 |
-
# model = AutoModel.from_pretrained(model_name)
|
| 102 |
-
|
| 103 |
# ----------------- لود PDF و ساخت ایندکس -----------------
|
| 104 |
|
| 105 |
@st.cache_resource
|
|
@@ -109,7 +105,7 @@ def build_pdf_index():
|
|
| 109 |
pages = loader.load()
|
| 110 |
|
| 111 |
splitter = RecursiveCharacterTextSplitter(
|
| 112 |
-
chunk_size=
|
| 113 |
chunk_overlap=50
|
| 114 |
)
|
| 115 |
|
|
@@ -119,7 +115,7 @@ def build_pdf_index():
|
|
| 119 |
|
| 120 |
documents = [LangchainDocument(page_content=t) for t in texts]
|
| 121 |
|
| 122 |
-
sentence_model = SentenceTransformer(
|
| 123 |
|
| 124 |
progress_bar = st.progress(0)
|
| 125 |
total_docs = len(documents)
|
|
@@ -140,12 +136,13 @@ def build_pdf_index():
|
|
| 140 |
progress_bar.empty()
|
| 141 |
embeddings = np.array(embeddings)
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
|
| 146 |
-
# groq_api_key = "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"
|
| 147 |
|
| 148 |
-
#
|
| 149 |
llm = ChatOpenAI(
|
| 150 |
base_url="https://api.together.xyz/v1",
|
| 151 |
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
|
@@ -156,24 +153,22 @@ llm = ChatOpenAI(
|
|
| 156 |
class SimpleRetriever(BaseRetriever):
|
| 157 |
documents: List[Document] = Field(...)
|
| 158 |
embeddings: List[np.ndarray] = Field(...)
|
|
|
|
| 159 |
|
| 160 |
def _get_relevant_documents(self, query: str) -> List[Document]:
|
| 161 |
-
#
|
| 162 |
-
sentence_model = SentenceTransformer(
|
| 163 |
query_embedding = sentence_model.encode(query, convert_to_numpy=True)
|
| 164 |
|
| 165 |
-
#
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
# ترتیبدهی اسناد بر اساس شباهتها
|
| 169 |
-
ranked_docs = np.argsort(similarities)[::-1]
|
| 170 |
|
| 171 |
-
#
|
| 172 |
-
return [self.documents[i] for i in
|
| 173 |
|
| 174 |
# ----------------- ساخت Index -----------------
|
| 175 |
-
documents, embeddings = build_pdf_index()
|
| 176 |
-
retriever = SimpleRetriever(documents=documents, embeddings=embeddings)
|
| 177 |
|
| 178 |
# ----------------- ساخت Chain -----------------
|
| 179 |
chain = RetrievalQA.from_chain_type(
|
|
|
|
| 13 |
from pydantic import Field
|
| 14 |
from sentence_transformers import SentenceTransformer
|
| 15 |
import numpy as np
|
| 16 |
+
import faiss
|
| 17 |
|
| 18 |
# ----------------- تنظیمات صفحه -----------------
|
| 19 |
st.set_page_config(page_title="چت بات توانا", page_icon="🪖", layout="wide")
|
|
|
|
| 96 |
</div>
|
| 97 |
""", unsafe_allow_html=True)
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
# ----------------- لود PDF و ساخت ایندکس -----------------
|
| 100 |
|
| 101 |
@st.cache_resource
|
|
|
|
| 105 |
pages = loader.load()
|
| 106 |
|
| 107 |
splitter = RecursiveCharacterTextSplitter(
|
| 108 |
+
chunk_size=128,
|
| 109 |
chunk_overlap=50
|
| 110 |
)
|
| 111 |
|
|
|
|
| 115 |
|
| 116 |
documents = [LangchainDocument(page_content=t) for t in texts]
|
| 117 |
|
| 118 |
+
sentence_model = SentenceTransformer('HooshvareLab/bert-fa-zwnj-base')
|
| 119 |
|
| 120 |
progress_bar = st.progress(0)
|
| 121 |
total_docs = len(documents)
|
|
|
|
| 136 |
progress_bar.empty()
|
| 137 |
embeddings = np.array(embeddings)
|
| 138 |
|
| 139 |
+
# ساخت ایندکس با استفاده از FAISS برای جستجو سریعتر
|
| 140 |
+
index = faiss.IndexFlatL2(embeddings.shape[1]) # استفاده از L2 distance
|
| 141 |
+
index.add(embeddings) # اضافه کردن بردارها به ایندکس FAISS
|
| 142 |
|
| 143 |
+
return documents, embeddings, index
|
|
|
|
| 144 |
|
| 145 |
+
# ----------------- تعریف LLM از Groq -----------------
|
| 146 |
llm = ChatOpenAI(
|
| 147 |
base_url="https://api.together.xyz/v1",
|
| 148 |
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
|
|
|
| 153 |
class SimpleRetriever(BaseRetriever):
|
| 154 |
documents: List[Document] = Field(...)
|
| 155 |
embeddings: List[np.ndarray] = Field(...)
|
| 156 |
+
index: faiss.Index
|
| 157 |
|
| 158 |
def _get_relevant_documents(self, query: str) -> List[Document]:
|
| 159 |
+
# تبدیل پرسش به بردار
|
| 160 |
+
sentence_model = SentenceTransformer('HooshvareLab/bert-fa-zwnj-base')
|
| 161 |
query_embedding = sentence_model.encode(query, convert_to_numpy=True)
|
| 162 |
|
| 163 |
+
# جستجو در ایندکس FAISS
|
| 164 |
+
_, indices = self.index.search(np.expand_dims(query_embedding, axis=0), 5) # پیدا کردن 5 سند مشابه
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
# بازگشت به 5 سند مرتبطترین
|
| 167 |
+
return [self.documents[i] for i in indices[0]]
|
| 168 |
|
| 169 |
# ----------------- ساخت Index -----------------
|
| 170 |
+
documents, embeddings, index = build_pdf_index()
|
| 171 |
+
retriever = SimpleRetriever(documents=documents, embeddings=embeddings, index=index)
|
| 172 |
|
| 173 |
# ----------------- ساخت Chain -----------------
|
| 174 |
chain = RetrievalQA.from_chain_type(
|