Update app.py
Browse files
app.py
CHANGED
|
@@ -1,346 +1,84 @@
|
|
| 1 |
-
import time
|
| 2 |
-
import streamlit as st
|
| 3 |
-
from langchain.document_loaders import PyPDFLoader
|
| 4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
-
from langchain.embeddings.base import Embeddings
|
| 6 |
-
from langchain.vectorstores import FAISS
|
| 7 |
-
from langchain.indexes import VectorstoreIndexCreator
|
| 8 |
-
from langchain.chains import RetrievalQA
|
| 9 |
-
from langchain.chat_models import ChatOpenAI
|
| 10 |
-
from typing import List
|
| 11 |
-
from together import Together
|
| 12 |
-
import pandas as pd
|
| 13 |
-
import streamlit as st
|
| 14 |
-
from langchain.docstore.document import Document
|
| 15 |
-
import docx
|
| 16 |
import os
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
| 18 |
from hazm import *
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
st.markdown("""
|
| 25 |
-
<style>
|
| 26 |
-
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
|
| 27 |
-
|
| 28 |
-
html, body, [class*="css"] {
|
| 29 |
-
font-family: 'Vazirmatn', Tahoma, sans-serif;
|
| 30 |
-
direction: rtl;
|
| 31 |
-
text-align: right;
|
| 32 |
-
}
|
| 33 |
-
|
| 34 |
-
.stApp {
|
| 35 |
-
background: linear-gradient(to left, #4b5e40, #2e3b2e);
|
| 36 |
-
color: #ffffff;
|
| 37 |
-
}
|
| 38 |
-
|
| 39 |
-
/* استایل سایدبار */
|
| 40 |
-
[data-testid="stSidebar"] {
|
| 41 |
-
width: 260px !important;
|
| 42 |
-
background-color: #1a2b1e;
|
| 43 |
-
border: none !important; /* حذف حاشیه زرد */
|
| 44 |
-
padding-top: 20px;
|
| 45 |
-
}
|
| 46 |
-
|
| 47 |
-
.menu-item {
|
| 48 |
-
display: flex;
|
| 49 |
-
align-items: center;
|
| 50 |
-
gap: 12px;
|
| 51 |
-
padding: 12px 20px;
|
| 52 |
-
font-size: 16px;
|
| 53 |
-
color: #d4d4d4;
|
| 54 |
-
cursor: pointer;
|
| 55 |
-
transition: background-color 0.3s ease;
|
| 56 |
-
}
|
| 57 |
-
|
| 58 |
-
.menu-item:hover {
|
| 59 |
-
background-color: #2e3b2e;
|
| 60 |
-
color: #b8860b;
|
| 61 |
-
}
|
| 62 |
-
|
| 63 |
-
.menu-item img {
|
| 64 |
-
width: 24px;
|
| 65 |
-
height: 24px;
|
| 66 |
-
}
|
| 67 |
-
|
| 68 |
-
/* استایل دکمهها */
|
| 69 |
-
.stButton>button {
|
| 70 |
-
background-color: #b8860b !important;
|
| 71 |
-
color: #1a2b1e !important;
|
| 72 |
-
font-family: 'Vazirmatn', Tahoma;
|
| 73 |
-
font-weight: 700;
|
| 74 |
-
border-radius: 10px;
|
| 75 |
-
padding: 12px 24px;
|
| 76 |
-
border: none;
|
| 77 |
-
transition: all 0.3s ease;
|
| 78 |
-
font-size: 16px;
|
| 79 |
-
width: 100%;
|
| 80 |
-
margin: 10px 0;
|
| 81 |
-
}
|
| 82 |
-
|
| 83 |
-
.stButton>button:hover {
|
| 84 |
-
background-color: #8b6508 !important;
|
| 85 |
-
transform: translateY(-2px);
|
| 86 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.3);
|
| 87 |
-
}
|
| 88 |
-
|
| 89 |
-
/* استایل هدر */
|
| 90 |
-
.header-text {
|
| 91 |
-
text-align: center;
|
| 92 |
-
margin: 20px 0;
|
| 93 |
-
background-color: rgba(26, 43, 30, 0.9);
|
| 94 |
-
padding: 25px;
|
| 95 |
-
border-radius: 15px;
|
| 96 |
-
box-shadow: 0 6px 12px rgba(0,0,0,0.4);
|
| 97 |
-
}
|
| 98 |
-
|
| 99 |
-
.header-text h1 {
|
| 100 |
-
font-size: 42px;
|
| 101 |
-
color: #b8860b;
|
| 102 |
-
margin: 0;
|
| 103 |
-
font-weight: 700;
|
| 104 |
-
}
|
| 105 |
-
|
| 106 |
-
.subtitle {
|
| 107 |
-
font-size: 18px;
|
| 108 |
-
color: #d4d4d4;
|
| 109 |
-
margin-top: 10px;
|
| 110 |
-
}
|
| 111 |
-
|
| 112 |
-
/* استایل پیام چت */
|
| 113 |
-
.chat-message {
|
| 114 |
-
background-color: rgba(26, 43, 30, 0.95);
|
| 115 |
-
border: 2px solid #b8860b;
|
| 116 |
-
border-radius: 15px;
|
| 117 |
-
padding: 20px;
|
| 118 |
-
margin: 15px 0;
|
| 119 |
-
box-shadow: 0 6px 12px rgba(0,0,0,0.3);
|
| 120 |
-
animation: fadeIn 0.6s ease;
|
| 121 |
-
font-size: 18px;
|
| 122 |
-
color: #d4d4d4;
|
| 123 |
-
display: flex;
|
| 124 |
-
align-items: center;
|
| 125 |
-
gap: 15px;
|
| 126 |
-
}
|
| 127 |
-
|
| 128 |
-
@keyframes fadeIn {
|
| 129 |
-
from { opacity: 0; transform: translateY(10px); }
|
| 130 |
-
to { opacity: 1; transform: translateY(0); }
|
| 131 |
-
}
|
| 132 |
-
|
| 133 |
-
/* استایل ورودیها */
|
| 134 |
-
.stTextInput>div>input, .stTextArea textarea {
|
| 135 |
-
background-color: rgba(26, 43, 30, 0.95) !important;
|
| 136 |
-
border-radius: 10px !important;
|
| 137 |
-
border: 1px solid #b8860b !important;
|
| 138 |
-
padding: 12px !important;
|
| 139 |
-
font-family: 'Vazirmatn', Tahoma;
|
| 140 |
-
font-size: 16px;
|
| 141 |
-
color: #d4d4d4 !important;
|
| 142 |
-
}
|
| 143 |
-
|
| 144 |
-
img.small-logo {
|
| 145 |
-
width: 120px;
|
| 146 |
-
margin: 0 auto 20px;
|
| 147 |
-
display: block;
|
| 148 |
-
}
|
| 149 |
-
|
| 150 |
-
hr {
|
| 151 |
-
border: 1px solid #b8860b;
|
| 152 |
-
margin: 15px 0;
|
| 153 |
-
}
|
| 154 |
-
|
| 155 |
-
/* رفع مشکل نوار زرد */
|
| 156 |
-
[data-testid="stSidebar"] > div {
|
| 157 |
-
border: none !important;
|
| 158 |
-
}
|
| 159 |
-
</style>
|
| 160 |
-
""", unsafe_allow_html=True)
|
| 161 |
-
|
| 162 |
-
# ----------------- احراز هویت ساده -----------------
|
| 163 |
-
if "authenticated" not in st.session_state:
|
| 164 |
-
st.session_state.authenticated = False
|
| 165 |
-
|
| 166 |
-
if not st.session_state.authenticated:
|
| 167 |
-
st.markdown("<h3 style='text-align: center; color: #b8860b;'>ورود به رزمیار ارتش</h3>", unsafe_allow_html=True)
|
| 168 |
-
username = st.text_input("نام کاربری:", placeholder="شناسه نظامی خود را وارد کنید")
|
| 169 |
-
password = st.text_input("رمز عبور:", type="password", placeholder="رمز عبور نظامی")
|
| 170 |
-
if st.button("ورود"):
|
| 171 |
-
if username == "admin" and password == "123":
|
| 172 |
-
st.session_state.authenticated = True
|
| 173 |
-
st.rerun()
|
| 174 |
-
else:
|
| 175 |
-
st.error("نام کاربری یا رمز عبور اش��باه است.")
|
| 176 |
-
st.stop()
|
| 177 |
-
|
| 178 |
-
# ----------------- سایدبار -----------------
|
| 179 |
-
with st.sidebar:
|
| 180 |
-
st.image("log.png", use_container_width=True) # اصلاح use_column_width
|
| 181 |
-
|
| 182 |
-
menu_items = [
|
| 183 |
-
("گزارش عملیاتی", "https://cdn-icons-png.flaticon.com/512/3596/3596165.png"),
|
| 184 |
-
("تاریخچه ماموریتها", "https://cdn-icons-png.flaticon.com/512/709/709496.png"),
|
| 185 |
-
("تحلیل دادههای نظامی", "https://cdn-icons-png.flaticon.com/512/1828/1828932.png"),
|
| 186 |
-
("مدیریت منابع", "https://cdn-icons-png.flaticon.com/512/681/681494.png"),
|
| 187 |
-
("دستیار فرماندهی", "https://cdn-icons-png.flaticon.com/512/3601/3601646.png"),
|
| 188 |
-
("تنظیمات امنیتی", "https://cdn-icons-png.flaticon.com/512/2099/2099058.png"),
|
| 189 |
-
("پشتیبانی فنی", "https://cdn-icons-png.flaticon.com/512/597/597177.png"),
|
| 190 |
-
]
|
| 191 |
-
|
| 192 |
-
for idx, (text, icon) in enumerate(menu_items):
|
| 193 |
-
st.markdown(f"""
|
| 194 |
-
<div class="menu-item">
|
| 195 |
-
<img src="{icon}" />
|
| 196 |
-
{text}
|
| 197 |
-
</div>
|
| 198 |
-
""", unsafe_allow_html=True)
|
| 199 |
-
if idx in [1, 3, 5]:
|
| 200 |
-
st.markdown("<hr/>", unsafe_allow_html=True)
|
| 201 |
-
|
| 202 |
-
# ----------------- محتوای اصلی -----------------
|
| 203 |
-
st.markdown("""
|
| 204 |
-
<div class="header-text">
|
| 205 |
-
<h1>رزمیار ارتش</h1>
|
| 206 |
-
<div class="subtitle">دستیار هوشمندارتش</div>
|
| 207 |
-
</div>
|
| 208 |
-
""", unsafe_allow_html=True)
|
| 209 |
-
|
| 210 |
-
# پیام خوشآمدگویی
|
| 211 |
-
st.markdown(f"""
|
| 212 |
-
<div class="chat-message">
|
| 213 |
-
<span style="font-size: 24px;">🪖</span>
|
| 214 |
-
<span>به رزم یار ارتش خوش آمدید. </span>
|
| 215 |
-
</div>
|
| 216 |
-
""", unsafe_allow_html=True)
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
# ----------------- لود csv و ساخت ایندکس -----------------
|
| 220 |
-
normalizer = Normalizer()
|
| 221 |
-
|
| 222 |
-
# توکنایزر هضم
|
| 223 |
-
tokenizer = word_tokenize
|
| 224 |
-
|
| 225 |
-
# بارگذاری مدل WordEmbedding
|
| 226 |
-
word_embedding = WordEmbedding(model_type='fasttext')
|
| 227 |
-
WordEmbedding = word_embedding.load_model('word2vec.bin') # مدل از اینترنت دانلود میشود
|
| 228 |
-
|
| 229 |
-
class CustomEmbeddings(Embeddings):
|
| 230 |
-
def __init__(self, word_embedding: WordEmbedding):
|
| 231 |
-
self.word_embedding = word_embedding
|
| 232 |
-
|
| 233 |
-
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
| 234 |
-
embeddings = []
|
| 235 |
-
for text in texts:
|
| 236 |
-
# ایجاد امبدینگ برای هر کلمه در متن
|
| 237 |
-
embeddings.append([self.word_embedding.embed(word) for word in tokenizer(text)])
|
| 238 |
-
return embeddings
|
| 239 |
-
|
| 240 |
-
def embed_query(self, text: str) -> List[float]:
|
| 241 |
-
return self.embed_documents([text])[0]
|
| 242 |
-
|
| 243 |
@st.cache_resource
|
| 244 |
-
def
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
)
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
)
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
)
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
st.
|
| 318 |
-
|
| 319 |
-
prompt = st.chat_input("چطور میتونم کمک کنم؟")
|
| 320 |
-
|
| 321 |
-
if prompt:
|
| 322 |
-
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
| 323 |
-
st.session_state.pending_prompt = prompt
|
| 324 |
-
st.rerun()
|
| 325 |
-
|
| 326 |
-
if st.session_state.pending_prompt:
|
| 327 |
-
with st.chat_message('ai'):
|
| 328 |
-
thinking = st.empty()
|
| 329 |
-
thinking.markdown("🤖 در حال فکر کردن...")
|
| 330 |
-
|
| 331 |
-
response = chain.run(f'پاسخ را فقط به زبان فارسی جواب بده به هیچ عنوان از زبان چینی در پاسخ استفاده نکن. سوال: {st.session_state.pending_prompt}')
|
| 332 |
-
answer = response.split("Helpful Answer:")[-1].strip() if "Helpful Answer:" in response else response.strip()
|
| 333 |
-
if not answer:
|
| 334 |
-
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
|
| 335 |
-
|
| 336 |
-
thinking.empty()
|
| 337 |
-
full_response = ""
|
| 338 |
-
placeholder = st.empty()
|
| 339 |
-
for word in answer.split():
|
| 340 |
-
full_response += word + " "
|
| 341 |
-
placeholder.markdown(full_response + "▌")
|
| 342 |
-
time.sleep(0.03)
|
| 343 |
-
|
| 344 |
-
placeholder.markdown(full_response)
|
| 345 |
-
st.session_state.messages.append({'role': 'ai', 'content': full_response})
|
| 346 |
-
st.session_state.pending_prompt = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import docx
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import streamlit as st
|
| 6 |
from hazm import *
|
| 7 |
+
from transformers import AutoTokenizer, AutoModel
|
| 8 |
|
| 9 |
+
# بارگذاری مدل
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
@st.cache_resource
|
| 11 |
+
def load_model():
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-base-uncased")
|
| 13 |
+
model = AutoModel.from_pretrained("HooshvareLab/bert-fa-base-uncased")
|
| 14 |
+
return tokenizer, model
|
| 15 |
+
|
| 16 |
+
tokenizer, model = load_model()
|
| 17 |
+
|
| 18 |
+
# پردازش فایلهای Word و تبدیل به جملات
|
| 19 |
+
@st.cache_data
|
| 20 |
+
def load_text_chunks(folder_path):
|
| 21 |
+
normalizer = Normalizer()
|
| 22 |
+
sentence_tokenizer = SentenceTokenizer()
|
| 23 |
+
texts = []
|
| 24 |
+
|
| 25 |
+
for filename in os.listdir(folder_path):
|
| 26 |
+
if filename.endswith(".docx"):
|
| 27 |
+
full_path = os.path.join(folder_path, filename)
|
| 28 |
+
doc = docx.Document(full_path)
|
| 29 |
+
file_text = "\n".join([para.text for para in doc.paragraphs])
|
| 30 |
+
if file_text.strip():
|
| 31 |
+
texts.append(file_text)
|
| 32 |
+
|
| 33 |
+
all_sentences = []
|
| 34 |
+
for text in texts:
|
| 35 |
+
normalized = normalizer.normalize(text)
|
| 36 |
+
sentences = sentence_tokenizer.tokenize(normalized)
|
| 37 |
+
all_sentences.extend(sentences)
|
| 38 |
+
|
| 39 |
+
# تقسیم به بخشهای ۵ جملهای
|
| 40 |
+
chunks = []
|
| 41 |
+
for i in range(0, len(all_sentences), 5):
|
| 42 |
+
chunk = " ".join(all_sentences[i:i+5])
|
| 43 |
+
if chunk:
|
| 44 |
+
chunks.append(chunk)
|
| 45 |
+
return chunks
|
| 46 |
+
|
| 47 |
+
# محاسبه embedding با BERT
|
| 48 |
+
def get_embedding(text):
|
| 49 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
outputs = model(**inputs)
|
| 52 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
| 53 |
+
return embeddings.squeeze().numpy()
|
| 54 |
+
|
| 55 |
+
# شباهت کسینوسی
|
| 56 |
+
def cosine_similarity(vec1, vec2):
|
| 57 |
+
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
|
| 58 |
+
|
| 59 |
+
# رابط کاربری استریملیت
|
| 60 |
+
st.title("🔎 یافتن نزدیکترین بخش ۵ جملهای به ورودی شما")
|
| 61 |
+
st.markdown("با استفاده از مدل `HooshvareLab/bert-fa-base-uncased`")
|
| 62 |
+
|
| 63 |
+
# مسیر پوشه فایلهای docx
|
| 64 |
+
folder_path = 'C:/Users/ici/Downloads/Telegram Desktop/45/46'
|
| 65 |
+
|
| 66 |
+
# بارگذاری و نمایش تعداد بخشها
|
| 67 |
+
chunks = load_text_chunks(folder_path)
|
| 68 |
+
st.success(f"{len(chunks)} بخش ۵ جملهای بارگذاری شد.")
|
| 69 |
+
|
| 70 |
+
# ورودی کاربر
|
| 71 |
+
user_input = st.text_area("لطفاً جمله یا متن خود را وارد کنید:")
|
| 72 |
+
|
| 73 |
+
if st.button("🔍 جستجو"):
|
| 74 |
+
if not user_input.strip():
|
| 75 |
+
st.warning("لطفاً یک جمله وارد کنید.")
|
| 76 |
+
else:
|
| 77 |
+
with st.spinner("در حال محاسبه شباهتها..."):
|
| 78 |
+
user_embedding = get_embedding(user_input)
|
| 79 |
+
similarities = [cosine_similarity(user_embedding, get_embedding(chunk)) for chunk in chunks]
|
| 80 |
+
most_similar_index = np.argmax(similarities)
|
| 81 |
+
result = chunks[most_similar_index]
|
| 82 |
+
|
| 83 |
+
st.subheader("📌 شبیهترین بخش ۵ جملهای:")
|
| 84 |
+
st.write(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|