Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,12 @@
|
|
|
|
|
| 1 |
import time
|
| 2 |
-
import tiktoken
|
| 3 |
import streamlit as st
|
| 4 |
-
from
|
| 5 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
-
from langchain.embeddings.base import Embeddings
|
| 7 |
-
from langchain.vectorstores import FAISS
|
| 8 |
-
from langchain.indexes import VectorstoreIndexCreator
|
| 9 |
-
from langchain.chains import RetrievalQA
|
| 10 |
-
from langchain.chat_models import ChatOpenAI
|
| 11 |
-
from typing import List
|
| 12 |
-
from together import Together
|
| 13 |
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
from langchain.schema import Document as LangchainDocument
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
st.set_page_config(page_title="چت بات ارتش", page_icon="🪖", layout="wide")
|
| 21 |
-
|
| 22 |
st.markdown("""
|
| 23 |
<style>
|
| 24 |
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
|
|
@@ -86,108 +74,38 @@ st.markdown("""
|
|
| 86 |
</style>
|
| 87 |
""", unsafe_allow_html=True)
|
| 88 |
|
|
|
|
| 89 |
col1, col2, col3 = st.columns([1, 1, 1])
|
| 90 |
with col2:
|
| 91 |
st.image("army.png", width=240)
|
| 92 |
|
| 93 |
st.markdown("""
|
| 94 |
<div class="header-text">
|
| 95 |
-
<h1
|
| 96 |
-
<div class="subtitle">دستیار هوشمند
|
| 97 |
</div>
|
| 98 |
""", unsafe_allow_html=True)
|
| 99 |
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
|
| 102 |
-
def __init__(self, model_name: str, api_key: str):
|
| 103 |
-
self.model_name = model_name
|
| 104 |
-
self.client = Together(api_key=api_key)
|
| 105 |
-
|
| 106 |
-
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
| 107 |
-
response = self.client.embeddings.create(model=self.model_name, input=texts)
|
| 108 |
-
return [item.embedding for item in response.data]
|
| 109 |
-
|
| 110 |
-
def embed_query(self, text: str) -> List[float]:
|
| 111 |
-
return self.embed_documents([text])[0]
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
def count_tokens(text, model_name="gpt-3.5-turbo"):
|
| 115 |
-
enc = tiktoken.encoding_for_model(model_name)
|
| 116 |
-
return len(enc.encode(text))
|
| 117 |
-
|
| 118 |
-
@st.cache_resource
|
| 119 |
-
def get_pdf_index():
|
| 120 |
-
with st.spinner('📄 در حال پردازش فایل PDF...'):
|
| 121 |
-
loader = [PyPDFLoader('test1.pdf')]
|
| 122 |
-
pages = []
|
| 123 |
-
for l in loader:
|
| 124 |
-
pages.extend(l.load())
|
| 125 |
-
|
| 126 |
-
splitter_initial = RecursiveCharacterTextSplitter(
|
| 127 |
-
chunk_size=124,
|
| 128 |
-
chunk_overlap=25
|
| 129 |
-
)
|
| 130 |
-
|
| 131 |
-
small_chunks = []
|
| 132 |
-
for page in pages:
|
| 133 |
-
text = page.page_content
|
| 134 |
-
if len(text) > 124:
|
| 135 |
-
small_chunks.extend(splitter_initial.split_text(text))
|
| 136 |
-
else:
|
| 137 |
-
small_chunks.append(text)
|
| 138 |
-
|
| 139 |
-
final_chunks = []
|
| 140 |
-
max_tokens = 128
|
| 141 |
-
|
| 142 |
-
for chunk in small_chunks:
|
| 143 |
-
token_count = count_tokens(chunk, model_name="gpt-3.5-turbo")
|
| 144 |
-
if token_count > max_tokens:
|
| 145 |
-
splitter_token_safe = RecursiveCharacterTextSplitter(
|
| 146 |
-
chunk_size=128,
|
| 147 |
-
chunk_overlap=64
|
| 148 |
-
)
|
| 149 |
-
smaller_chunks = splitter_token_safe.split_text(chunk)
|
| 150 |
-
final_chunks.extend(smaller_chunks)
|
| 151 |
-
else:
|
| 152 |
-
final_chunks.append(chunk)
|
| 153 |
-
|
| 154 |
-
documents = [LangchainDocument(page_content=text) for text in final_chunks]
|
| 155 |
-
|
| 156 |
-
embeddings = TogetherEmbeddings(
|
| 157 |
-
model_name="togethercomputer/m2-bert-80M-32k-retrieval",
|
| 158 |
-
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
# اینجا دیگه Vectorstore مستقیم میسازیم با FAISS
|
| 162 |
-
vectordb = FAISS.from_documents(documents, embedding=embeddings)
|
| 163 |
-
|
| 164 |
-
return vectordb
|
| 165 |
-
|
| 166 |
-
index = get_pdf_index()
|
| 167 |
-
|
| 168 |
-
llm = ChatOpenAI(
|
| 169 |
-
base_url="https://api.together.xyz/v1",
|
| 170 |
-
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
| 171 |
-
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
| 172 |
-
)
|
| 173 |
-
|
| 174 |
-
chain = RetrievalQA.from_chain_type(
|
| 175 |
-
llm=llm,
|
| 176 |
-
chain_type='stuff',
|
| 177 |
-
retriever=index.vectorstore.as_retriever(),
|
| 178 |
-
input_key='question'
|
| 179 |
-
)
|
| 180 |
|
|
|
|
|
|
|
|
|
|
| 181 |
if 'messages' not in st.session_state:
|
| 182 |
st.session_state.messages = []
|
| 183 |
|
| 184 |
if 'pending_prompt' not in st.session_state:
|
| 185 |
st.session_state.pending_prompt = None
|
| 186 |
|
|
|
|
| 187 |
for msg in st.session_state.messages:
|
| 188 |
with st.chat_message(msg['role']):
|
| 189 |
st.markdown(f"���️ {msg['content']}", unsafe_allow_html=True)
|
| 190 |
|
|
|
|
| 191 |
prompt = st.chat_input("چطور میتونم کمک کنم؟")
|
| 192 |
|
| 193 |
if prompt:
|
|
@@ -195,17 +113,28 @@ if prompt:
|
|
| 195 |
st.session_state.pending_prompt = prompt
|
| 196 |
st.rerun()
|
| 197 |
|
|
|
|
| 198 |
if st.session_state.pending_prompt:
|
| 199 |
with st.chat_message('ai'):
|
| 200 |
thinking = st.empty()
|
| 201 |
thinking.markdown("🤖 در حال فکر کردن...")
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
thinking.empty()
|
|
|
|
|
|
|
| 209 |
full_response = ""
|
| 210 |
placeholder = st.empty()
|
| 211 |
for word in answer.split():
|
|
|
|
| 1 |
+
import os
|
| 2 |
import time
|
|
|
|
| 3 |
import streamlit as st
|
| 4 |
+
from groq import Groq
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# ----------------- تنظیمات صفحه -----------------
|
| 7 |
+
st.set_page_config(page_title="چتبات ارتش - Powered by Groq", page_icon="🪖", layout="wide")
|
| 8 |
|
| 9 |
+
# استایل فارسی و بکگراند
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
st.markdown("""
|
| 11 |
<style>
|
| 12 |
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
|
|
|
|
| 74 |
</style>
|
| 75 |
""", unsafe_allow_html=True)
|
| 76 |
|
| 77 |
+
# ----------------- لوگو و عنوان -----------------
|
| 78 |
col1, col2, col3 = st.columns([1, 1, 1])
|
| 79 |
with col2:
|
| 80 |
st.image("army.png", width=240)
|
| 81 |
|
| 82 |
st.markdown("""
|
| 83 |
<div class="header-text">
|
| 84 |
+
<h1>چتبات ارتش</h1>
|
| 85 |
+
<div class="subtitle">دستیار هوشمند میدان نبرد - Powered by Groq</div>
|
| 86 |
</div>
|
| 87 |
""", unsafe_allow_html=True)
|
| 88 |
|
| 89 |
+
# ----------------- اتصال به Groq -----------------
|
| 90 |
+
api_key = "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"
|
| 91 |
|
| 92 |
+
client = Groq(api_key=api_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
selected_model = "llama3-70b-8192" # بهترین مدل Groq
|
| 95 |
+
|
| 96 |
+
# ----------------- استیت ذخیرهی پیامها -----------------
|
| 97 |
if 'messages' not in st.session_state:
|
| 98 |
st.session_state.messages = []
|
| 99 |
|
| 100 |
if 'pending_prompt' not in st.session_state:
|
| 101 |
st.session_state.pending_prompt = None
|
| 102 |
|
| 103 |
+
# ----------------- نمایش پیامهای قبلی -----------------
|
| 104 |
for msg in st.session_state.messages:
|
| 105 |
with st.chat_message(msg['role']):
|
| 106 |
st.markdown(f"���️ {msg['content']}", unsafe_allow_html=True)
|
| 107 |
|
| 108 |
+
# ----------------- ورودی چت -----------------
|
| 109 |
prompt = st.chat_input("چطور میتونم کمک کنم؟")
|
| 110 |
|
| 111 |
if prompt:
|
|
|
|
| 113 |
st.session_state.pending_prompt = prompt
|
| 114 |
st.rerun()
|
| 115 |
|
| 116 |
+
# ----------------- پاسخ دادن مدل -----------------
|
| 117 |
if st.session_state.pending_prompt:
|
| 118 |
with st.chat_message('ai'):
|
| 119 |
thinking = st.empty()
|
| 120 |
thinking.markdown("🤖 در حال فکر کردن...")
|
| 121 |
|
| 122 |
+
try:
|
| 123 |
+
chat_completion = client.chat.completions.create(
|
| 124 |
+
messages=[
|
| 125 |
+
{"role": "system", "content": "پاسخ را همیشه رسمی و فارسی بده."},
|
| 126 |
+
{"role": "user", "content": st.session_state.pending_prompt}
|
| 127 |
+
],
|
| 128 |
+
model=selected_model,
|
| 129 |
+
)
|
| 130 |
+
answer = chat_completion.choices[0].message.content.strip()
|
| 131 |
+
|
| 132 |
+
except Exception as e:
|
| 133 |
+
answer = f"خطا در پاسخدهی: {str(e)}"
|
| 134 |
|
| 135 |
thinking.empty()
|
| 136 |
+
|
| 137 |
+
# انیمیشن تایپ پاسخ
|
| 138 |
full_response = ""
|
| 139 |
placeholder = st.empty()
|
| 140 |
for word in answer.split():
|