Update app.py
Browse files
app.py
CHANGED
@@ -1,191 +1,92 @@
|
|
1 |
-
import time
|
2 |
import streamlit as st
|
3 |
-
|
4 |
-
|
5 |
-
from
|
|
|
6 |
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.
|
8 |
-
from langchain.chains import RetrievalQA
|
9 |
from langchain.chat_models import ChatOpenAI
|
10 |
-
from
|
11 |
-
from
|
12 |
-
|
13 |
-
from langchain.docstore.document import Document
|
14 |
|
15 |
-
|
|
|
16 |
|
17 |
# ----------------- استایل سفارشی -----------------
|
18 |
-
st.markdown("""
|
19 |
<style>
|
20 |
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
|
|
|
21 |
html, body, [class*="css"] {
|
22 |
font-family: 'Vazirmatn', Tahoma, sans-serif;
|
23 |
direction: rtl;
|
24 |
text-align: right;
|
25 |
}
|
|
|
26 |
.stApp {
|
27 |
-
background: linear-gradient(to left, #
|
28 |
-
|
29 |
-
.sidebar .sidebar-content {
|
30 |
-
background-color: #ffffff;
|
31 |
-
border-left: 2px solid #4e8a3e;
|
32 |
-
padding-top: 10px;
|
33 |
-
}
|
34 |
-
.sidebar .sidebar-content div {
|
35 |
-
margin-bottom: 10px;
|
36 |
-
font-weight: bold;
|
37 |
-
color: #2c3e50;
|
38 |
-
font-size: 15px;
|
39 |
-
}
|
40 |
-
.stButton>button {
|
41 |
-
background-color: #4e8a3e !important;
|
42 |
-
color: white !important;
|
43 |
-
font-weight: bold;
|
44 |
-
border-radius: 8px;
|
45 |
-
padding: 5px 16px;
|
46 |
-
transition: 0.3s;
|
47 |
-
font-size: 14px;
|
48 |
-
}
|
49 |
-
.stButton>button:hover {
|
50 |
-
background-color: #3c6d30 !important;
|
51 |
-
}
|
52 |
-
.header-text {
|
53 |
-
text-align: center;
|
54 |
-
margin-top: 15px;
|
55 |
-
margin-bottom: 25px;
|
56 |
-
background-color: rgba(255, 255, 255, 0.85);
|
57 |
-
padding: 16px;
|
58 |
-
border-radius: 16px;
|
59 |
-
box-shadow: 0 4px 10px rgba(0,0,0,0.1);
|
60 |
-
}
|
61 |
-
.header-text h1 {
|
62 |
-
font-size: 36px;
|
63 |
-
color: #2c3e50;
|
64 |
-
margin: 0;
|
65 |
-
font-weight: bold;
|
66 |
-
}
|
67 |
-
.subtitle {
|
68 |
-
font-size: 16px;
|
69 |
-
color: #34495e;
|
70 |
-
margin-top: 5px;
|
71 |
-
}
|
72 |
-
.chat-message {
|
73 |
-
background-color: rgba(255, 255, 255, 0.95);
|
74 |
-
border: 1px solid #4e8a3e;
|
75 |
-
border-radius: 12px;
|
76 |
-
padding: 14px;
|
77 |
-
margin-bottom: 10px;
|
78 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.08);
|
79 |
-
animation: fadeIn 0.5s ease;
|
80 |
-
}
|
81 |
-
.stTextInput>div>input, .stTextArea textarea {
|
82 |
-
background-color: rgba(255,255,255,0.9) !important;
|
83 |
-
border-radius: 8px !important;
|
84 |
-
direction: rtl;
|
85 |
-
text-align: right;
|
86 |
-
font-family: 'Vazirmatn', Tahoma;
|
87 |
-
}
|
88 |
-
img.small-logo {
|
89 |
-
width: 90px;
|
90 |
-
margin-bottom: 15px;
|
91 |
-
display: block;
|
92 |
-
margin-right: auto;
|
93 |
-
margin-left: auto;
|
94 |
-
}
|
95 |
-
.menu-item {
|
96 |
-
display: flex;
|
97 |
-
align-items: center;
|
98 |
-
gap: 8px;
|
99 |
-
padding: 6px 0;
|
100 |
-
font-size: 15px;
|
101 |
-
cursor: pointer;
|
102 |
-
}
|
103 |
-
.menu-item img {
|
104 |
-
width: 20px;
|
105 |
-
height: 20px;
|
106 |
}
|
|
|
107 |
</style>
|
108 |
""", unsafe_allow_html=True)
|
109 |
|
110 |
-
# -----------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
with st.sidebar:
|
112 |
-
st.image("log.png",
|
113 |
-
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
<div class="menu-item">
|
135 |
-
<img src="https://cdn-icons-png.flaticon.com/512/3601/3601646.png" />
|
136 |
-
دستیار ویژه
|
137 |
-
</div>
|
138 |
-
<div class="menu-item">
|
139 |
-
<img src="https://cdn-icons-png.flaticon.com/512/709/709612.png" />
|
140 |
-
ابزار مالی
|
141 |
-
</div>
|
142 |
-
<hr/>
|
143 |
-
<div class="menu-item">
|
144 |
-
<img src="https://cdn-icons-png.flaticon.com/512/2099/2099058.png" />
|
145 |
-
تنظیمات
|
146 |
-
</div>
|
147 |
-
<div class="menu-item">
|
148 |
-
<img src="https://cdn-icons-png.flaticon.com/512/597/597177.png" />
|
149 |
-
پشتیبانی
|
150 |
-
</div>
|
151 |
-
""", unsafe_allow_html=True)
|
152 |
-
st.markdown("""
|
153 |
-
<style>
|
154 |
-
/* تنظیم سایز سایدبار */
|
155 |
-
[data-testid="stSidebar"] {
|
156 |
-
width: 220px !important;
|
157 |
-
flex-shrink: 0;
|
158 |
-
}
|
159 |
-
[data-testid="stSidebar"] > div {
|
160 |
-
width: 220px !important;
|
161 |
-
}
|
162 |
-
</style>
|
163 |
-
""", unsafe_allow_html=True)
|
164 |
-
|
165 |
-
# محتوای اصلی
|
166 |
st.markdown("""
|
167 |
<div class="header-text">
|
168 |
-
<h1
|
169 |
-
<div class="subtitle">دستیار هوشمند
|
170 |
</div>
|
171 |
""", unsafe_allow_html=True)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
|
188 |
-
#
|
189 |
class TogetherEmbeddings(Embeddings):
|
190 |
def __init__(self, model_name: str, api_key: str):
|
191 |
self.model_name = model_name
|
@@ -204,7 +105,7 @@ class TogetherEmbeddings(Embeddings):
|
|
204 |
return self.embed_documents([text])[0]
|
205 |
|
206 |
|
207 |
-
# ----------- پردازش و ایندکس کردن CSV -----------
|
208 |
@st.cache_resource
|
209 |
def build_vectorstore_from_csv(csv_file_path: str):
|
210 |
df = pd.read_csv(csv_file_path)
|
@@ -226,119 +127,61 @@ def build_vectorstore_from_csv(csv_file_path: str):
|
|
226 |
|
227 |
embeddings = TogetherEmbeddings(
|
228 |
model_name="togethercomputer/m2-bert-80M-32k-retrieval",
|
229 |
-
api_key=
|
230 |
-
|
231 |
|
232 |
vectorstore = FAISS.from_documents(documents, embeddings)
|
233 |
return vectorstore, embeddings
|
234 |
|
235 |
|
236 |
-
# ----------- بارگذاری مدل زبانی -----------
|
237 |
def load_llm():
|
238 |
return ChatOpenAI(
|
239 |
base_url="https://api.together.xyz/v1",
|
240 |
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
241 |
-
model="
|
242 |
)
|
243 |
|
244 |
|
245 |
-
# -----------
|
246 |
-
def build_prompt(context: str, user_question: str) -> str:
|
247 |
-
return f"""با توجه به اطلاعات زیر، فقط بر اساس آنها به سؤال پاسخ بده. اگر اطلاعات کافی نیست، بگو اطلاعات کافی ندارم.
|
248 |
-
🔹 اطلاعات:\n{context}\n\n❓ سؤال: {user_question}
|
249 |
-
"""
|
250 |
-
|
251 |
-
|
252 |
-
# ----------- تمیز کردن خروجی مدل از پاسخهای اضافی -----------
|
253 |
-
def clean_llm_response(response_text: str) -> str:
|
254 |
-
lines = response_text.split('\n')
|
255 |
-
filtered = [
|
256 |
-
line for line in lines
|
257 |
-
if not line.strip().startswith("<")
|
258 |
-
and not line.strip().lower().startswith(("think", "note", "#"))
|
259 |
-
]
|
260 |
-
return "\n".join(filtered).strip() or "متأسفم، اطلاعات دقیقی در این مورد ندارم."
|
261 |
-
|
262 |
-
|
263 |
-
# ----------- پردازش سوال و بازیابی پاسخها -----------
|
264 |
def process_user_query(query: str, vectorstore, embedding_model, llm):
|
265 |
-
# 1. ساخت embedding از سوال
|
266 |
query_embedding = embedding_model.embed_query(query)
|
267 |
-
|
268 |
-
# 2. پیدا کردن 3 پاسخ مشابه با cosine similarity
|
269 |
docs = vectorstore.similarity_search_by_vector(query_embedding, k=3)
|
270 |
context = "\n".join([doc.page_content for doc in docs])
|
271 |
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
# 4. ارسال پرامپت به LLM و دریافت پاسخ
|
276 |
response = llm.invoke(final_prompt)
|
277 |
raw_answer = response.content.strip()
|
278 |
|
279 |
-
|
280 |
-
clean_answer = clean_llm_response(raw_answer)
|
281 |
return clean_answer
|
282 |
|
283 |
|
284 |
-
# ----------- اجرای Streamlit UI -----------
|
285 |
def run_chat_ui():
|
286 |
csv_file_path = 'output (1).csv'
|
287 |
try:
|
288 |
vectorstore, embedding_model = build_vectorstore_from_csv(csv_file_path)
|
289 |
except Exception as e:
|
290 |
st.error(f"خطا در پردازش فایل: {str(e)}")
|
291 |
-
|
292 |
-
|
293 |
llm = load_llm()
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
st.session_state.messages.append({'role': 'user', 'content': user_prompt})
|
311 |
-
st.session_state.pending_prompt = user_prompt
|
312 |
-
st.rerun()
|
313 |
-
|
314 |
-
# پردازش سوال
|
315 |
-
if st.session_state.pending_prompt:
|
316 |
-
with st.chat_message("ai"):
|
317 |
-
thinking = st.empty()
|
318 |
-
thinking.markdown("🤖 در حال فکر کردن...")
|
319 |
-
|
320 |
-
try:
|
321 |
-
# پردازش سوال و دریافت پاسخ نهایی
|
322 |
-
query = st.session_state.pending_prompt
|
323 |
-
clean_answer = process_user_query(query, vectorstore, embedding_model, llm)
|
324 |
-
|
325 |
-
thinking.empty()
|
326 |
-
full_response = ""
|
327 |
-
placeholder = st.empty()
|
328 |
-
for word in clean_answer.split():
|
329 |
-
full_response += word + " "
|
330 |
-
placeholder.markdown(full_response + "▌")
|
331 |
-
time.sleep(0.03)
|
332 |
-
|
333 |
-
placeholder.markdown(full_response)
|
334 |
-
st.session_state.messages.append({'role': 'ai', 'content': full_response})
|
335 |
-
st.session_state.pending_prompt = None
|
336 |
-
|
337 |
-
except Exception as e:
|
338 |
-
thinking.empty()
|
339 |
-
st.error(f"خطا در پردازش مدل: {str(e)}")
|
340 |
-
|
341 |
-
|
342 |
-
# اجرای برنامه
|
343 |
-
if __name__ == "__main__":
|
344 |
-
run_chat_ui()
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import datetime
|
3 |
+
import pandas as pd
|
4 |
+
from typing import List
|
5 |
+
from langchain.embeddings import Embeddings
|
6 |
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.prompts import ChatPromptTemplate
|
|
|
8 |
from langchain.chat_models import ChatOpenAI
|
9 |
+
from langchain.chains import ChatChain
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain.schema import Document
|
|
|
12 |
|
13 |
+
# ----------------- تنظیمات صفحه -----------------
|
14 |
+
st.set_page_config(page_title="رزمیار ارتش", page_icon="🪖", layout="wide")
|
15 |
|
16 |
# ----------------- استایل سفارشی -----------------
|
17 |
+
st.markdown("""
|
18 |
<style>
|
19 |
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
|
20 |
+
|
21 |
html, body, [class*="css"] {
|
22 |
font-family: 'Vazirmatn', Tahoma, sans-serif;
|
23 |
direction: rtl;
|
24 |
text-align: right;
|
25 |
}
|
26 |
+
|
27 |
.stApp {
|
28 |
+
background: linear-gradient(to left, #4b5e40, #2e3b2e);
|
29 |
+
color: #ffffff;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
}
|
31 |
+
/* استایلهای دیگر در اینجا قرار دارند */
|
32 |
</style>
|
33 |
""", unsafe_allow_html=True)
|
34 |
|
35 |
+
# ----------------- احراز هویت ساده -----------------
|
36 |
+
if "authenticated" not in st.session_state:
|
37 |
+
st.session_state.authenticated = False
|
38 |
+
|
39 |
+
if not st.session_state.authenticated:
|
40 |
+
st.markdown("<h3 style='text-align: center; color: #b8860b;'>ورود به رزمیار ارتش</h3>", unsafe_allow_html=True)
|
41 |
+
username = st.text_input("نام کاربری:", placeholder="شناسه نظامی خود را وارد کنید")
|
42 |
+
password = st.text_input("رمز عبور:", type="password", placeholder="رمز عبور نظامی")
|
43 |
+
if st.button("ورود"):
|
44 |
+
if username == "admin" and password == "123":
|
45 |
+
st.session_state.authenticated = True
|
46 |
+
st.rerun()
|
47 |
+
else:
|
48 |
+
st.error("نام کاربری یا رمز عبور اشتباه است.")
|
49 |
+
st.stop()
|
50 |
+
|
51 |
+
# ----------------- سایدبار -----------------
|
52 |
with st.sidebar:
|
53 |
+
st.image("log.png", use_container_width=True)
|
|
|
54 |
|
55 |
+
menu_items = [
|
56 |
+
("گزارش عملیاتی", "https://cdn-icons-png.flaticon.com/512/3596/3596165.png"),
|
57 |
+
("تاریخچه ماموریتها", "https://cdn-icons-png.flaticon.com/512/709/709496.png"),
|
58 |
+
("تحلیل دادههای نظامی", "https://cdn-icons-png.flaticon.com/512/1828/1828932.png"),
|
59 |
+
("مدیریت منابع", "https://cdn-icons-png.flaticon.com/512/681/681494.png"),
|
60 |
+
("دستیار فرماندهی", "https://cdn-icons-png.flaticon.com/512/3601/3601646.png"),
|
61 |
+
("تنظیمات امنیتی", "https://cdn-icons-png.flaticon.com/512/2099/2099058.png"),
|
62 |
+
("پشتیبانی فنی", "https://cdn-icons-png.flaticon.com/512/597/597177.png"),
|
63 |
+
]
|
64 |
+
|
65 |
+
for idx, (text, icon) in enumerate(menu_items):
|
66 |
+
st.markdown(f"""
|
67 |
+
<div class="menu-item">
|
68 |
+
<img src="{icon}" />
|
69 |
+
{text}
|
70 |
+
</div>
|
71 |
+
""", unsafe_allow_html=True)
|
72 |
+
|
73 |
+
# ----------------- محتوای اصلی -----------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
st.markdown("""
|
75 |
<div class="header-text">
|
76 |
+
<h1>رزمیار ارتش</h1>
|
77 |
+
<div class="subtitle">دستیار هوشمند ارتش</div>
|
78 |
</div>
|
79 |
""", unsafe_allow_html=True)
|
80 |
|
81 |
+
# پیام خوشآمدگویی
|
82 |
+
st.markdown(f"""
|
83 |
+
<div class="chat-message">
|
84 |
+
<span style="font-size: 24px;">🪖</span>
|
85 |
+
<span>به رزمیار ارتش خوش آمدید.</span>
|
86 |
+
</div>
|
87 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
# ----------------- کلاس توگدر امبدینگ -----------------
|
90 |
class TogetherEmbeddings(Embeddings):
|
91 |
def __init__(self, model_name: str, api_key: str):
|
92 |
self.model_name = model_name
|
|
|
105 |
return self.embed_documents([text])[0]
|
106 |
|
107 |
|
108 |
+
# ----------- پردازش و ایندکس کردن CSV -----------
|
109 |
@st.cache_resource
|
110 |
def build_vectorstore_from_csv(csv_file_path: str):
|
111 |
df = pd.read_csv(csv_file_path)
|
|
|
127 |
|
128 |
embeddings = TogetherEmbeddings(
|
129 |
model_name="togethercomputer/m2-bert-80M-32k-retrieval",
|
130 |
+
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979'
|
131 |
+
)
|
132 |
|
133 |
vectorstore = FAISS.from_documents(documents, embeddings)
|
134 |
return vectorstore, embeddings
|
135 |
|
136 |
|
137 |
+
# ----------- بارگذاری مدل زبانی -----------
|
138 |
def load_llm():
|
139 |
return ChatOpenAI(
|
140 |
base_url="https://api.together.xyz/v1",
|
141 |
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
|
142 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
|
143 |
)
|
144 |
|
145 |
|
146 |
+
# ----------- پردازش سوال و بازیابی پاسخها -----------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
def process_user_query(query: str, vectorstore, embedding_model, llm):
|
|
|
148 |
query_embedding = embedding_model.embed_query(query)
|
|
|
|
|
149 |
docs = vectorstore.similarity_search_by_vector(query_embedding, k=3)
|
150 |
context = "\n".join([doc.page_content for doc in docs])
|
151 |
|
152 |
+
final_prompt = f"""با توجه به اطلاعات زیر، فقط بر اساس آنها به سؤال پاسخ بده. اگر اطلاعات کافی نیست، بگو اطلاعات کافی ندارم.
|
153 |
+
🔹 اطلاعات:\n{context}\n\n❓ سؤال: {query}
|
154 |
+
"""
|
|
|
155 |
response = llm.invoke(final_prompt)
|
156 |
raw_answer = response.content.strip()
|
157 |
|
158 |
+
clean_answer = raw_answer.strip() or "متأسفم، اطلاعات دقیقی در این مورد ندارم."
|
|
|
159 |
return clean_answer
|
160 |
|
161 |
|
162 |
+
# ----------- اجرای Streamlit UI -----------
|
163 |
def run_chat_ui():
|
164 |
csv_file_path = 'output (1).csv'
|
165 |
try:
|
166 |
vectorstore, embedding_model = build_vectorstore_from_csv(csv_file_path)
|
167 |
except Exception as e:
|
168 |
st.error(f"خطا در پردازش فایل: {str(e)}")
|
169 |
+
return
|
170 |
+
|
171 |
llm = load_llm()
|
172 |
|
173 |
+
# فرم ورودی و دکمهها
|
174 |
+
with st.form(key="chat_form"):
|
175 |
+
user_input = st.text_area("دستور یا پرسوجو:", height=120, placeholder="ماموریت یا سوال خود را وارد کنید...")
|
176 |
+
submit_button = st.form_submit_button("ارسال دستور")
|
177 |
+
|
178 |
+
if submit_button and user_input:
|
179 |
+
response = process_user_query(user_input, vectorstore, embedding_model, llm)
|
180 |
+
st.markdown(f"""
|
181 |
+
<div class="chat-message">
|
182 |
+
<span style="font-size: 24px;">🎖️</span>
|
183 |
+
<span>{response}</span>
|
184 |
+
</div>
|
185 |
+
""", unsafe_allow_html=True)
|
186 |
+
|
187 |
+
run_chat_ui()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|