import os import time import streamlit as st from langchain.chat_models import ChatOpenAI from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.schema import Document from langchain.chains import RetrievalQA from langchain_core.retrievers import BaseRetriever from langchain_core.prompts import PromptTemplate from typing import List from pydantic import Field import numpy as np from sentence_transformers import SentenceTransformer import faiss from langchain.indexes import VectorstoreIndexCreator from langchain.vectorstores import FAISS from langchain.embeddings import SentenceTransformerEmbeddings from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings from transformers import AutoTokenizer # ----------------- تنظیمات صفحه ----------------- st.set_page_config(page_title="چت‌ بات توانا", page_icon="🪖", layout="wide") st.markdown(""" """, unsafe_allow_html=True) col1, col2, col3 = st.columns([1, 0.2, 1]) with col2: st.image("army.png", width=240) st.markdown("""

چت‌ بات توانا

دستیار هوشمند
""", unsafe_allow_html=True) # ----------------- لود PDF و ساخت ایندکس ----------------- # tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/gpt2-fa") # tokenizer.pad_token = tokenizer.eos_token # یا می‌توانید این خط را برای توکن جدید فعال کنید: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) @st.cache_resource def get_pdf_index(): with st.spinner('📄 در حال پردازش فایل PDF...'): pdf_loader = PyPDFLoader('test1.pdf') # embeddings = SentenceTransformer("Thomslionel/embedings") # embeddings = HuggingFaceInstructEmbeddings(model_name="aidal/Persian-Mistral-7B") embeddings = TogetherEmbeddings( model_name="togethercomputer/m2-bert-80M-8k-retrieval", api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979" ) index = VectorstoreIndexCreator(embedding=embeddings, text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=128)).from_loaders([pdf_loader]) return index # ----------------- بارگذاری دیتا ----------------- index = get_pdf_index() llm = ChatOpenAI( base_url="https://api.together.xyz/v1", api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979', model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free" ) chain = RetrievalQA.from_chain_type( llm=llm, chain_type='stuff', retriever=index.vectorstore.as_retriever(), input_key='question' ) if 'messages' not in st.session_state: st.session_state.messages = [] if 'pending_prompt' not in st.session_state: st.session_state.pending_prompt = None for msg in st.session_state.messages: with st.chat_message(msg['role']): st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True) prompt = st.chat_input("چطور می‌تونم کمک کنم؟") if prompt: st.session_state.messages.append({'role': 'user', 'content': prompt}) st.session_state.pending_prompt = prompt st.rerun() if st.session_state.pending_prompt: with st.chat_message('ai'): thinking = st.empty() thinking.markdown("🤖 در حال فکر کردن...") response = chain.run(f'پاسخ را فقط به زبان فارسی جواب بده. سوال: {st.session_state.pending_prompt}') answer = response.split("Helpful Answer:")[-1].strip() if not answer: answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم." thinking.empty() full_response = "" placeholder = st.empty() for word in answer.split(): full_response += word + " " placeholder.markdown(full_response + "▌") time.sleep(0.03) placeholder.markdown(full_response) st.session_state.messages.append({'role': 'ai', 'content': full_response}) st.session_state.pending_prompt = None