import os import time import streamlit as st from langchain.chat_models import ChatOpenAI from transformers import AutoTokenizer, AutoModel from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.schema import Document as LangchainDocument from langchain.chains import RetrievalQA from langchain.llms import OpenAI import torch from langchain_core.retrievers import BaseRetriever from langchain_core.documents import Document from typing import List from pydantic import Field from groq import Groq # ----------------- تنظیمات صفحه ----------------- st.set_page_config(page_title="چت‌بات ارتش - فقط از PDF", page_icon="🪖", layout="wide") # ----------------- بارگذاری مدل FarsiBERT ----------------- model_name = "HooshvareLab/bert-fa-zwnj-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) # ----------------- لود PDF و ساخت ایندکس ----------------- @st.cache_resource def build_pdf_index(): with st.spinner('📄 در حال پردازش فایل PDF...'): loader = PyPDFLoader("test1.pdf") pages = loader.load() splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=50 ) texts = [] for page in pages: texts.extend(splitter.split_text(page.page_content)) documents = [LangchainDocument(page_content=t) for t in texts] embeddings = [] for doc in documents: inputs = tokenizer(doc.page_content, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) embeddings.append(outputs.last_hidden_state.mean(dim=1).numpy()) return documents, embeddings # ----------------- تعریف LLM از Groq ----------------- groq_api_key = "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" from langchain.llms import HuggingFaceEndpoint groq_api_key = os.environ.get("GROQ_API_KEY") # به جای OpenAI اینو بذار: llm = ChatOpenAI( base_url="https://api.together.xyz/v1", api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979', model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free" ) # ----------------- تعریف SimpleRetriever ----------------- class SimpleRetriever(BaseRetriever): documents: List[Document] = Field(...) embeddings: List = Field(...) def _get_relevant_documents(self, query: str) -> List[Document]: inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) query_embedding = outputs.last_hidden_state.mean(dim=1).numpy() similarities = [] for doc_embedding in self.embeddings: similarity = (query_embedding * doc_embedding).sum() similarities.append(similarity) ranked_docs = sorted(zip(similarities, self.documents), reverse=True) return [doc for _, doc in ranked_docs[:5]] # ----------------- ساخت Index ----------------- documents, embeddings = build_pdf_index() retriever = SimpleRetriever(documents=documents, embeddings=embeddings) # ----------------- ساخت Chain ----------------- chain = RetrievalQA.from_chain_type( llm=llm, retriever=retriever, chain_type="stuff", input_key="question" ) # ----------------- استیت برای چت ----------------- if 'messages' not in st.session_state: st.session_state.messages = [] if 'pending_prompt' not in st.session_state: st.session_state.pending_prompt = None # ----------------- نمایش پیام‌های قبلی ----------------- for msg in st.session_state.messages: with st.chat_message(msg['role']): st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True) # ----------------- ورودی چت ----------------- prompt = st.chat_input("سوالی در مورد فایل بپرس...") if prompt: st.session_state.messages.append({'role': 'user', 'content': prompt}) st.session_state.pending_prompt = prompt st.rerun() # ----------------- پاسخ مدل ----------------- if st.session_state.pending_prompt: with st.chat_message('ai'): thinking = st.empty() thinking.markdown("🤖 در حال فکر کردن از روی PDF...") try: response = chain.run(f"سوال: {st.session_state.pending_prompt}") answer = response.strip() except Exception as e: answer = f"خطا در پاسخ‌دهی: {str(e)}" thinking.empty() full_response = "" placeholder = st.empty() for word in answer.split(): full_response += word + " " placeholder.markdown(full_response + "▌") time.sleep(0.03) placeholder.markdown(full_response) st.session_state.messages.append({'role': 'ai', 'content': full_response}) st.session_state.pending_prompt = None