M17idd commited on
Commit
c86406f
·
verified ·
1 Parent(s): 9fa7152

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -43
app.py CHANGED
@@ -1,31 +1,17 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
 
30
  for message in client.chat_completion(
31
  messages,
@@ -35,30 +21,21 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
 
 
 
4
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
5
 
6
+ def generate_report(operation_data, max_tokens, temperature, top_p):
7
+ system_prompt = "تو یک افسر گزارش‌نویس نظامی هستی. از داده‌های خام عملیات نظامی، یک گزارش رسمی، دقیق و خلاصه تهیه کن."
8
 
9
+ messages = [
10
+ {"role": "system", "content": system_prompt},
11
+ {"role": "user", "content": operation_data}
12
+ ]
 
 
 
 
 
13
 
14
+ report = ""
 
 
 
 
 
 
 
 
15
 
16
  for message in client.chat_completion(
17
  messages,
 
21
  top_p=top_p,
22
  ):
23
  token = message.choices[0].delta.content
24
+ report += token
25
+ yield report
26
+
27
+ demo = gr.Interface(
28
+ fn=generate_report,
29
+ inputs=[
30
+ gr.Textbox(label="اطلاعات عملیات نظامی", lines=10, placeholder="مثلاً: در ساعت ۵ صبح، گردان الف از محور غربی وارد منطقه شد..."),
31
+ gr.Slider(1, 2048, value=512, label="حداکثر توکن خروجی"),
32
+ gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="دمای خلاقیت (temperature)"),
33
+ gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"),
 
 
 
 
 
 
 
 
 
 
 
34
  ],
35
+ outputs=gr.Textbox(label="گزارش رسمی تولید شده"),
36
+ title="گزارش‌نویس هوش مصنوعی عملیات نظامی",
37
+ description="اطلاعات خام عملیات نظامی را وارد کن تا گزارش رسمی تولید شود."
38
  )
39
 
 
40
  if __name__ == "__main__":
41
  demo.launch()