Update app.py
Browse files
app.py
CHANGED
@@ -56,29 +56,6 @@ model = model.to(device)
|
|
56 |
model.eval()
|
57 |
|
58 |
# Inference function
|
59 |
-
def get_word_classifications(text):
|
60 |
-
text = " ".join(text.split(" ")[:2048])
|
61 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
62 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
63 |
-
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
64 |
-
with torch.no_grad():
|
65 |
-
tags, _ = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
66 |
-
word_tags = []
|
67 |
-
current_word = ""
|
68 |
-
current_tag = ""
|
69 |
-
for token, tag in zip(tokens, tags[0]):
|
70 |
-
if token in ["<s>", "</s>"]:
|
71 |
-
continue
|
72 |
-
if token.startswith("▁"):
|
73 |
-
if current_word:
|
74 |
-
word_tags.append(str(current_tag))
|
75 |
-
current_word = token[1:] if token != "▁" else ""
|
76 |
-
current_tag = tag
|
77 |
-
else:
|
78 |
-
current_word += token
|
79 |
-
if current_word:
|
80 |
-
word_tags.append(str(current_tag))
|
81 |
-
return word_tags
|
82 |
|
83 |
def get_word_probabilities(text):
|
84 |
text = " ".join(text.split(" ")[:2048])
|
@@ -172,7 +149,7 @@ def setup_hf_dataset():
|
|
172 |
|
173 |
# Main inference + logging function
|
174 |
def infer_and_log(text_input):
|
175 |
-
word_tags =
|
176 |
timestamp = datetime.datetime.now().isoformat()
|
177 |
submission_id = str(uuid.uuid4())
|
178 |
|
|
|
56 |
model.eval()
|
57 |
|
58 |
# Inference function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
def get_word_probabilities(text):
|
61 |
text = " ".join(text.split(" ")[:2048])
|
|
|
149 |
|
150 |
# Main inference + logging function
|
151 |
def infer_and_log(text_input):
|
152 |
+
word_tags = get_word_probabilities(text_input)
|
153 |
timestamp = datetime.datetime.now().isoformat()
|
154 |
submission_id = str(uuid.uuid4())
|
155 |
|