Update app.py
Browse files
app.py
CHANGED
@@ -10,17 +10,26 @@ from huggingface_hub import HfApi, HfFolder
|
|
10 |
# CONFIG
|
11 |
MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english" # Change if needed
|
12 |
HF_DATASET_REPO = "your-username/your-logging-dataset" # Must be created beforehand
|
13 |
-
|
14 |
# Token from environment in Spaces
|
15 |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
16 |
-
|
17 |
# Load model + tokenizer
|
18 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
19 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
20 |
-
|
21 |
# Log entries
|
22 |
log_entries = []
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def infer_and_log(text_input):
|
25 |
inputs = tokenizer(text_input, return_tensors="pt", truncation=True)
|
26 |
with torch.no_grad():
|
@@ -55,22 +64,18 @@ def save_to_hf():
|
|
55 |
return f"Pushed {len(df)} logs to {HF_DATASET_REPO}!"
|
56 |
|
57 |
with gr.Blocks() as demo:
|
58 |
-
gr.Markdown("##
|
59 |
|
60 |
with gr.Row():
|
61 |
-
input_box = gr.Textbox(label="Input Text", lines=
|
62 |
-
output_box = gr.Textbox(label="Predicted Label", lines=
|
63 |
|
64 |
with gr.Row():
|
65 |
submit_btn = gr.Button("Submit")
|
66 |
clear_btn = gr.Button("Clear")
|
67 |
|
68 |
-
status_box = gr.Textbox(label="Status", interactive=False)
|
69 |
-
|
70 |
submit_btn.click(fn=infer_and_log, inputs=input_box, outputs=output_box)
|
71 |
clear_btn.click(fn=clear_fields, outputs=[input_box, output_box])
|
72 |
-
|
73 |
-
gr.Button("Save Logs to HF Dataset").click(fn=save_to_hf, outputs=status_box)
|
74 |
|
75 |
if __name__ == "__main__":
|
76 |
demo.launch()
|
|
|
10 |
# CONFIG
|
11 |
MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english" # Change if needed
|
12 |
HF_DATASET_REPO = "your-username/your-logging-dataset" # Must be created beforehand
|
|
|
13 |
# Token from environment in Spaces
|
14 |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
15 |
# Load model + tokenizer
|
16 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
17 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
|
|
18 |
# Log entries
|
19 |
log_entries = []
|
20 |
|
21 |
+
def setup_hf_dataset():
|
22 |
+
global DATASET_CREATED
|
23 |
+
if not DATASET_CREATED and HF_TOKEN:
|
24 |
+
try:
|
25 |
+
api = HfApi()
|
26 |
+
create_repo(DATASET_NAME, repo_type="dataset", token=HF_TOKEN, exist_ok=True)
|
27 |
+
DATASET_CREATED = True
|
28 |
+
print(f"Dataset {DATASET_NAME} is ready")
|
29 |
+
except Exception as e: print(f"Error setting up dataset: {e}")
|
30 |
+
elif not HF_TOKEN:
|
31 |
+
print("Warning: HF_TOKEN not set. Data will be stored locally only.")
|
32 |
+
|
33 |
def infer_and_log(text_input):
|
34 |
inputs = tokenizer(text_input, return_tensors="pt", truncation=True)
|
35 |
with torch.no_grad():
|
|
|
64 |
return f"Pushed {len(df)} logs to {HF_DATASET_REPO}!"
|
65 |
|
66 |
with gr.Blocks() as demo:
|
67 |
+
gr.Markdown("## AI-generated text detector")
|
68 |
|
69 |
with gr.Row():
|
70 |
+
input_box = gr.Textbox(label="Input Text", lines=6, interactive=True)
|
71 |
+
output_box = gr.Textbox(label="Predicted Label", lines=6)
|
72 |
|
73 |
with gr.Row():
|
74 |
submit_btn = gr.Button("Submit")
|
75 |
clear_btn = gr.Button("Clear")
|
76 |
|
|
|
|
|
77 |
submit_btn.click(fn=infer_and_log, inputs=input_box, outputs=output_box)
|
78 |
clear_btn.click(fn=clear_fields, outputs=[input_box, output_box])
|
|
|
|
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
demo.launch()
|