Update app.py
Browse files
app.py
CHANGED
|
@@ -8,27 +8,28 @@ import torch.nn as nn
|
|
| 8 |
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
| 9 |
from huggingface_hub import HfApi, create_repo, hf_hub_download
|
| 10 |
from torchcrf import CRF
|
| 11 |
-
|
| 12 |
# Constants
|
| 13 |
HF_DATASET_REPO = "M2ai/mgtd-logs"
|
| 14 |
HF_TOKEN = os.getenv("Mgtd")
|
| 15 |
DATASET_CREATED = False
|
| 16 |
-
|
| 17 |
# Model identifiers
|
| 18 |
code = "ENG"
|
| 19 |
pntr = 2
|
| 20 |
model_name_or_path = "microsoft/mdeberta-v3-base"
|
| 21 |
-
hf_token = os.environ.get("Mgtd")
|
| 22 |
-
|
| 23 |
# Download model checkpoint
|
| 24 |
-
file_path = hf_hub_download(
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
# Define CRF model
|
| 32 |
class AutoModelCRF(nn.Module):
|
| 33 |
def __init__(self, model_name_or_path, dropout=0.075):
|
| 34 |
super().__init__()
|
|
@@ -38,7 +39,6 @@ class AutoModelCRF(nn.Module):
|
|
| 38 |
self.dropout = nn.Dropout(dropout)
|
| 39 |
self.linear = nn.Linear(self.config.hidden_size, self.num_labels)
|
| 40 |
self.crf = CRF(self.num_labels, batch_first=True)
|
| 41 |
-
|
| 42 |
def forward(self, input_ids, attention_mask):
|
| 43 |
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
| 44 |
seq_output = self.dropout(outputs[0])
|
|
@@ -46,7 +46,6 @@ class AutoModelCRF(nn.Module):
|
|
| 46 |
tags = self.crf.decode(emissions, attention_mask.byte())
|
| 47 |
return tags, emissions
|
| 48 |
|
| 49 |
-
# Load model
|
| 50 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 51 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
| 52 |
model = AutoModelCRF(model_name_or_path)
|
|
@@ -55,8 +54,6 @@ model.load_state_dict(checkpoint.get("model_state_dict", checkpoint), strict=Fal
|
|
| 55 |
model = model.to(device)
|
| 56 |
model.eval()
|
| 57 |
|
| 58 |
-
# Inference function
|
| 59 |
-
|
| 60 |
def get_word_probabilities(text):
|
| 61 |
text = " ".join(text.split(" ")[:2048])
|
| 62 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
|
@@ -65,12 +62,10 @@ def get_word_probabilities(text):
|
|
| 65 |
with torch.no_grad():
|
| 66 |
tags, emission = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
| 67 |
probs = torch.softmax(emission, dim=-1)[0, :, 1].cpu().numpy()
|
| 68 |
-
|
| 69 |
word_probs = []
|
| 70 |
word_colors = []
|
| 71 |
current_word = ""
|
| 72 |
current_probs = []
|
| 73 |
-
|
| 74 |
for token, prob in zip(tokens, probs):
|
| 75 |
if token in ["<s>", "</s>"]:
|
| 76 |
continue
|
|
@@ -78,109 +73,54 @@ def get_word_probabilities(text):
|
|
| 78 |
if current_word and current_probs:
|
| 79 |
current_prob = sum(current_probs) / len(current_probs)
|
| 80 |
word_probs.append(current_prob)
|
| 81 |
-
|
| 82 |
-
# Determine color based on probability
|
| 83 |
-
color = (
|
| 84 |
-
"green" if current_prob < 0.25 else
|
| 85 |
-
"yellow" if current_prob < 0.5 else
|
| 86 |
-
"orange" if current_prob < 0.75 else
|
| 87 |
-
"red"
|
| 88 |
-
)
|
| 89 |
word_colors.append(color)
|
| 90 |
-
|
| 91 |
current_word = token[1:] if token != "▁" else ""
|
| 92 |
current_probs = [prob]
|
| 93 |
else:
|
| 94 |
current_word += token
|
| 95 |
current_probs.append(prob)
|
| 96 |
-
|
| 97 |
if current_word and current_probs:
|
| 98 |
current_prob = sum(current_probs) / len(current_probs)
|
| 99 |
word_probs.append(current_prob)
|
| 100 |
-
|
| 101 |
-
# Determine color for the last word
|
| 102 |
-
color = (
|
| 103 |
-
"green" if current_prob < 0.25 else
|
| 104 |
-
"yellow" if current_prob < 0.5 else
|
| 105 |
-
"orange" if current_prob < 0.75 else
|
| 106 |
-
"red"
|
| 107 |
-
)
|
| 108 |
word_colors.append(color)
|
| 109 |
-
|
| 110 |
word_probs = [float(p) for p in word_probs]
|
| 111 |
return word_probs, word_colors
|
| 112 |
-
|
| 113 |
-
# HF logging setup
|
| 114 |
-
def setup_hf_dataset():
|
| 115 |
-
global DATASET_CREATED
|
| 116 |
-
if not DATASET_CREATED and HF_TOKEN:
|
| 117 |
-
try:
|
| 118 |
-
create_repo(HF_DATASET_REPO, repo_type="dataset", token=HF_TOKEN, exist_ok=True)
|
| 119 |
-
DATASET_CREATED = True
|
| 120 |
-
print(f"Dataset {HF_DATASET_REPO} is ready.")
|
| 121 |
-
except Exception as e:
|
| 122 |
-
print(f"Error setting up dataset: {e}")
|
| 123 |
-
|
| 124 |
-
# Main inference + logging function
|
| 125 |
def infer_and_log(text_input):
|
| 126 |
word_probs, word_colors = get_word_probabilities(text_input)
|
| 127 |
timestamp = datetime.datetime.now().isoformat()
|
| 128 |
submission_id = str(uuid.uuid4())
|
| 129 |
-
|
| 130 |
-
log_data = {
|
| 131 |
-
"id": submission_id,
|
| 132 |
-
"timestamp": timestamp,
|
| 133 |
-
"input": text_input,
|
| 134 |
-
"output_probs": word_probs
|
| 135 |
-
}
|
| 136 |
-
|
| 137 |
os.makedirs("logs", exist_ok=True)
|
| 138 |
log_file = f"logs/{timestamp.replace(':', '_')}.json"
|
| 139 |
with open(log_file, "w") as f:
|
| 140 |
json.dump(log_data, f, indent=2)
|
| 141 |
-
|
| 142 |
if HF_TOKEN and DATASET_CREATED:
|
| 143 |
try:
|
| 144 |
-
HfApi().upload_file(
|
| 145 |
-
path_or_fileobj=log_file,
|
| 146 |
-
path_in_repo=f"logs/{os.path.basename(log_file)}",
|
| 147 |
-
repo_id=HF_DATASET_REPO,
|
| 148 |
-
repo_type="dataset",
|
| 149 |
-
token=HF_TOKEN
|
| 150 |
-
)
|
| 151 |
print(f"Uploaded log {submission_id}")
|
| 152 |
except Exception as e:
|
| 153 |
print(f"Error uploading log: {e}")
|
| 154 |
-
|
| 155 |
tokens = text_input.split()
|
| 156 |
-
formatted_output = " ".join(
|
| 157 |
-
f'<span style="color:{color}">{token}</span>' for token, color in zip(tokens, word_colors)
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
return formatted_output
|
| 161 |
|
| 162 |
-
|
| 163 |
def clear_fields():
|
| 164 |
return "", ""
|
| 165 |
-
|
| 166 |
-
# Prepare dataset once
|
| 167 |
setup_hf_dataset()
|
| 168 |
|
| 169 |
-
# Gradio UI
|
| 170 |
with gr.Blocks() as app:
|
| 171 |
gr.Markdown("Machine Generated Text Detector")
|
| 172 |
-
|
| 173 |
with gr.Row():
|
| 174 |
input_box = gr.Textbox(label="Input Text", lines=10)
|
| 175 |
output_box = gr.HTML(label="Output Text")
|
| 176 |
-
|
| 177 |
with gr.Row():
|
| 178 |
submit_btn = gr.Button("Submit")
|
| 179 |
clear_btn = gr.Button("Clear")
|
| 180 |
-
|
| 181 |
-
|
| 182 |
submit_btn.click(fn=infer_and_log, inputs=input_box, outputs=output_box)
|
| 183 |
clear_btn.click(fn=clear_fields, outputs=[input_box, output_box])
|
| 184 |
-
|
| 185 |
if __name__ == "__main__":
|
| 186 |
app.launch()
|
|
|
|
| 8 |
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
| 9 |
from huggingface_hub import HfApi, create_repo, hf_hub_download
|
| 10 |
from torchcrf import CRF
|
|
|
|
| 11 |
# Constants
|
| 12 |
HF_DATASET_REPO = "M2ai/mgtd-logs"
|
| 13 |
HF_TOKEN = os.getenv("Mgtd")
|
| 14 |
DATASET_CREATED = False
|
|
|
|
| 15 |
# Model identifiers
|
| 16 |
code = "ENG"
|
| 17 |
pntr = 2
|
| 18 |
model_name_or_path = "microsoft/mdeberta-v3-base"
|
| 19 |
+
hf_token = os.environ.get("Mgtd")
|
|
|
|
| 20 |
# Download model checkpoint
|
| 21 |
+
file_path = hf_hub_download(repo_id="1024m/MGTD-Long-New",filename=f"{code}/mdeberta-epoch-{pntr}.pt",token=hf_token,local_dir="./checkpoints")
|
| 22 |
+
|
| 23 |
+
def setup_hf_dataset():
|
| 24 |
+
global DATASET_CREATED
|
| 25 |
+
if not DATASET_CREATED and HF_TOKEN:
|
| 26 |
+
try:
|
| 27 |
+
create_repo(HF_DATASET_REPO, repo_type="dataset", token=HF_TOKEN, exist_ok=True)
|
| 28 |
+
DATASET_CREATED = True
|
| 29 |
+
print(f"Dataset {HF_DATASET_REPO} is ready.")
|
| 30 |
+
except Exception as e:
|
| 31 |
+
print(f"Error setting up dataset: {e}")
|
| 32 |
|
|
|
|
| 33 |
class AutoModelCRF(nn.Module):
|
| 34 |
def __init__(self, model_name_or_path, dropout=0.075):
|
| 35 |
super().__init__()
|
|
|
|
| 39 |
self.dropout = nn.Dropout(dropout)
|
| 40 |
self.linear = nn.Linear(self.config.hidden_size, self.num_labels)
|
| 41 |
self.crf = CRF(self.num_labels, batch_first=True)
|
|
|
|
| 42 |
def forward(self, input_ids, attention_mask):
|
| 43 |
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
| 44 |
seq_output = self.dropout(outputs[0])
|
|
|
|
| 46 |
tags = self.crf.decode(emissions, attention_mask.byte())
|
| 47 |
return tags, emissions
|
| 48 |
|
|
|
|
| 49 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 50 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
| 51 |
model = AutoModelCRF(model_name_or_path)
|
|
|
|
| 54 |
model = model.to(device)
|
| 55 |
model.eval()
|
| 56 |
|
|
|
|
|
|
|
| 57 |
def get_word_probabilities(text):
|
| 58 |
text = " ".join(text.split(" ")[:2048])
|
| 59 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
|
|
|
| 62 |
with torch.no_grad():
|
| 63 |
tags, emission = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
| 64 |
probs = torch.softmax(emission, dim=-1)[0, :, 1].cpu().numpy()
|
|
|
|
| 65 |
word_probs = []
|
| 66 |
word_colors = []
|
| 67 |
current_word = ""
|
| 68 |
current_probs = []
|
|
|
|
| 69 |
for token, prob in zip(tokens, probs):
|
| 70 |
if token in ["<s>", "</s>"]:
|
| 71 |
continue
|
|
|
|
| 73 |
if current_word and current_probs:
|
| 74 |
current_prob = sum(current_probs) / len(current_probs)
|
| 75 |
word_probs.append(current_prob)
|
| 76 |
+
color = ("green" if current_prob < 0.25 else "yellow" if current_prob < 0.5 else "orange" if current_prob < 0.75 else "red")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
word_colors.append(color)
|
|
|
|
| 78 |
current_word = token[1:] if token != "▁" else ""
|
| 79 |
current_probs = [prob]
|
| 80 |
else:
|
| 81 |
current_word += token
|
| 82 |
current_probs.append(prob)
|
|
|
|
| 83 |
if current_word and current_probs:
|
| 84 |
current_prob = sum(current_probs) / len(current_probs)
|
| 85 |
word_probs.append(current_prob)
|
| 86 |
+
color = ("green" if current_prob < 0.25 else "yellow" if current_prob < 0.5 else "orange" if current_prob < 0.75 else "red")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
word_colors.append(color)
|
|
|
|
| 88 |
word_probs = [float(p) for p in word_probs]
|
| 89 |
return word_probs, word_colors
|
| 90 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
def infer_and_log(text_input):
|
| 92 |
word_probs, word_colors = get_word_probabilities(text_input)
|
| 93 |
timestamp = datetime.datetime.now().isoformat()
|
| 94 |
submission_id = str(uuid.uuid4())
|
| 95 |
+
log_data = {"id": submission_id,"timestamp": timestamp,"input": text_input,"output_probs": word_probs}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
os.makedirs("logs", exist_ok=True)
|
| 97 |
log_file = f"logs/{timestamp.replace(':', '_')}.json"
|
| 98 |
with open(log_file, "w") as f:
|
| 99 |
json.dump(log_data, f, indent=2)
|
|
|
|
| 100 |
if HF_TOKEN and DATASET_CREATED:
|
| 101 |
try:
|
| 102 |
+
HfApi().upload_file(path_or_fileobj=log_file,path_in_repo=f"logs/{os.path.basename(log_file)}",repo_id=HF_DATASET_REPO,repo_type="dataset",token=HF_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
print(f"Uploaded log {submission_id}")
|
| 104 |
except Exception as e:
|
| 105 |
print(f"Error uploading log: {e}")
|
|
|
|
| 106 |
tokens = text_input.split()
|
| 107 |
+
formatted_output = " ".join(f'<span style="color:{color}">{token}</span>' for token, color in zip(tokens, word_colors))
|
|
|
|
|
|
|
|
|
|
| 108 |
return formatted_output
|
| 109 |
|
|
|
|
| 110 |
def clear_fields():
|
| 111 |
return "", ""
|
|
|
|
|
|
|
| 112 |
setup_hf_dataset()
|
| 113 |
|
|
|
|
| 114 |
with gr.Blocks() as app:
|
| 115 |
gr.Markdown("Machine Generated Text Detector")
|
|
|
|
| 116 |
with gr.Row():
|
| 117 |
input_box = gr.Textbox(label="Input Text", lines=10)
|
| 118 |
output_box = gr.HTML(label="Output Text")
|
|
|
|
| 119 |
with gr.Row():
|
| 120 |
submit_btn = gr.Button("Submit")
|
| 121 |
clear_btn = gr.Button("Clear")
|
|
|
|
|
|
|
| 122 |
submit_btn.click(fn=infer_and_log, inputs=input_box, outputs=output_box)
|
| 123 |
clear_btn.click(fn=clear_fields, outputs=[input_box, output_box])
|
| 124 |
+
|
| 125 |
if __name__ == "__main__":
|
| 126 |
app.launch()
|