Update app.py
Browse files
app.py
CHANGED
@@ -8,27 +8,28 @@ import torch.nn as nn
|
|
8 |
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
9 |
from huggingface_hub import HfApi, create_repo, hf_hub_download
|
10 |
from torchcrf import CRF
|
11 |
-
|
12 |
# Constants
|
13 |
HF_DATASET_REPO = "M2ai/mgtd-logs"
|
14 |
HF_TOKEN = os.getenv("Mgtd")
|
15 |
DATASET_CREATED = False
|
16 |
-
|
17 |
# Model identifiers
|
18 |
code = "ENG"
|
19 |
pntr = 2
|
20 |
model_name_or_path = "microsoft/mdeberta-v3-base"
|
21 |
-
hf_token = os.environ.get("Mgtd")
|
22 |
-
|
23 |
# Download model checkpoint
|
24 |
-
file_path = hf_hub_download(
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
# Define CRF model
|
32 |
class AutoModelCRF(nn.Module):
|
33 |
def __init__(self, model_name_or_path, dropout=0.075):
|
34 |
super().__init__()
|
@@ -38,7 +39,6 @@ class AutoModelCRF(nn.Module):
|
|
38 |
self.dropout = nn.Dropout(dropout)
|
39 |
self.linear = nn.Linear(self.config.hidden_size, self.num_labels)
|
40 |
self.crf = CRF(self.num_labels, batch_first=True)
|
41 |
-
|
42 |
def forward(self, input_ids, attention_mask):
|
43 |
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
44 |
seq_output = self.dropout(outputs[0])
|
@@ -46,7 +46,6 @@ class AutoModelCRF(nn.Module):
|
|
46 |
tags = self.crf.decode(emissions, attention_mask.byte())
|
47 |
return tags, emissions
|
48 |
|
49 |
-
# Load model
|
50 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
51 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
52 |
model = AutoModelCRF(model_name_or_path)
|
@@ -55,8 +54,6 @@ model.load_state_dict(checkpoint.get("model_state_dict", checkpoint), strict=Fal
|
|
55 |
model = model.to(device)
|
56 |
model.eval()
|
57 |
|
58 |
-
# Inference function
|
59 |
-
|
60 |
def get_word_probabilities(text):
|
61 |
text = " ".join(text.split(" ")[:2048])
|
62 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
@@ -65,12 +62,10 @@ def get_word_probabilities(text):
|
|
65 |
with torch.no_grad():
|
66 |
tags, emission = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
67 |
probs = torch.softmax(emission, dim=-1)[0, :, 1].cpu().numpy()
|
68 |
-
|
69 |
word_probs = []
|
70 |
word_colors = []
|
71 |
current_word = ""
|
72 |
current_probs = []
|
73 |
-
|
74 |
for token, prob in zip(tokens, probs):
|
75 |
if token in ["<s>", "</s>"]:
|
76 |
continue
|
@@ -78,109 +73,54 @@ def get_word_probabilities(text):
|
|
78 |
if current_word and current_probs:
|
79 |
current_prob = sum(current_probs) / len(current_probs)
|
80 |
word_probs.append(current_prob)
|
81 |
-
|
82 |
-
# Determine color based on probability
|
83 |
-
color = (
|
84 |
-
"green" if current_prob < 0.25 else
|
85 |
-
"yellow" if current_prob < 0.5 else
|
86 |
-
"orange" if current_prob < 0.75 else
|
87 |
-
"red"
|
88 |
-
)
|
89 |
word_colors.append(color)
|
90 |
-
|
91 |
current_word = token[1:] if token != "▁" else ""
|
92 |
current_probs = [prob]
|
93 |
else:
|
94 |
current_word += token
|
95 |
current_probs.append(prob)
|
96 |
-
|
97 |
if current_word and current_probs:
|
98 |
current_prob = sum(current_probs) / len(current_probs)
|
99 |
word_probs.append(current_prob)
|
100 |
-
|
101 |
-
# Determine color for the last word
|
102 |
-
color = (
|
103 |
-
"green" if current_prob < 0.25 else
|
104 |
-
"yellow" if current_prob < 0.5 else
|
105 |
-
"orange" if current_prob < 0.75 else
|
106 |
-
"red"
|
107 |
-
)
|
108 |
word_colors.append(color)
|
109 |
-
|
110 |
word_probs = [float(p) for p in word_probs]
|
111 |
return word_probs, word_colors
|
112 |
-
|
113 |
-
# HF logging setup
|
114 |
-
def setup_hf_dataset():
|
115 |
-
global DATASET_CREATED
|
116 |
-
if not DATASET_CREATED and HF_TOKEN:
|
117 |
-
try:
|
118 |
-
create_repo(HF_DATASET_REPO, repo_type="dataset", token=HF_TOKEN, exist_ok=True)
|
119 |
-
DATASET_CREATED = True
|
120 |
-
print(f"Dataset {HF_DATASET_REPO} is ready.")
|
121 |
-
except Exception as e:
|
122 |
-
print(f"Error setting up dataset: {e}")
|
123 |
-
|
124 |
-
# Main inference + logging function
|
125 |
def infer_and_log(text_input):
|
126 |
word_probs, word_colors = get_word_probabilities(text_input)
|
127 |
timestamp = datetime.datetime.now().isoformat()
|
128 |
submission_id = str(uuid.uuid4())
|
129 |
-
|
130 |
-
log_data = {
|
131 |
-
"id": submission_id,
|
132 |
-
"timestamp": timestamp,
|
133 |
-
"input": text_input,
|
134 |
-
"output_probs": word_probs
|
135 |
-
}
|
136 |
-
|
137 |
os.makedirs("logs", exist_ok=True)
|
138 |
log_file = f"logs/{timestamp.replace(':', '_')}.json"
|
139 |
with open(log_file, "w") as f:
|
140 |
json.dump(log_data, f, indent=2)
|
141 |
-
|
142 |
if HF_TOKEN and DATASET_CREATED:
|
143 |
try:
|
144 |
-
HfApi().upload_file(
|
145 |
-
path_or_fileobj=log_file,
|
146 |
-
path_in_repo=f"logs/{os.path.basename(log_file)}",
|
147 |
-
repo_id=HF_DATASET_REPO,
|
148 |
-
repo_type="dataset",
|
149 |
-
token=HF_TOKEN
|
150 |
-
)
|
151 |
print(f"Uploaded log {submission_id}")
|
152 |
except Exception as e:
|
153 |
print(f"Error uploading log: {e}")
|
154 |
-
|
155 |
tokens = text_input.split()
|
156 |
-
formatted_output = " ".join(
|
157 |
-
f'<span style="color:{color}">{token}</span>' for token, color in zip(tokens, word_colors)
|
158 |
-
)
|
159 |
-
|
160 |
return formatted_output
|
161 |
|
162 |
-
|
163 |
def clear_fields():
|
164 |
return "", ""
|
165 |
-
|
166 |
-
# Prepare dataset once
|
167 |
setup_hf_dataset()
|
168 |
|
169 |
-
# Gradio UI
|
170 |
with gr.Blocks() as app:
|
171 |
gr.Markdown("Machine Generated Text Detector")
|
172 |
-
|
173 |
with gr.Row():
|
174 |
input_box = gr.Textbox(label="Input Text", lines=10)
|
175 |
output_box = gr.HTML(label="Output Text")
|
176 |
-
|
177 |
with gr.Row():
|
178 |
submit_btn = gr.Button("Submit")
|
179 |
clear_btn = gr.Button("Clear")
|
180 |
-
|
181 |
-
|
182 |
submit_btn.click(fn=infer_and_log, inputs=input_box, outputs=output_box)
|
183 |
clear_btn.click(fn=clear_fields, outputs=[input_box, output_box])
|
184 |
-
|
185 |
if __name__ == "__main__":
|
186 |
app.launch()
|
|
|
8 |
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
9 |
from huggingface_hub import HfApi, create_repo, hf_hub_download
|
10 |
from torchcrf import CRF
|
|
|
11 |
# Constants
|
12 |
HF_DATASET_REPO = "M2ai/mgtd-logs"
|
13 |
HF_TOKEN = os.getenv("Mgtd")
|
14 |
DATASET_CREATED = False
|
|
|
15 |
# Model identifiers
|
16 |
code = "ENG"
|
17 |
pntr = 2
|
18 |
model_name_or_path = "microsoft/mdeberta-v3-base"
|
19 |
+
hf_token = os.environ.get("Mgtd")
|
|
|
20 |
# Download model checkpoint
|
21 |
+
file_path = hf_hub_download(repo_id="1024m/MGTD-Long-New",filename=f"{code}/mdeberta-epoch-{pntr}.pt",token=hf_token,local_dir="./checkpoints")
|
22 |
+
|
23 |
+
def setup_hf_dataset():
|
24 |
+
global DATASET_CREATED
|
25 |
+
if not DATASET_CREATED and HF_TOKEN:
|
26 |
+
try:
|
27 |
+
create_repo(HF_DATASET_REPO, repo_type="dataset", token=HF_TOKEN, exist_ok=True)
|
28 |
+
DATASET_CREATED = True
|
29 |
+
print(f"Dataset {HF_DATASET_REPO} is ready.")
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Error setting up dataset: {e}")
|
32 |
|
|
|
33 |
class AutoModelCRF(nn.Module):
|
34 |
def __init__(self, model_name_or_path, dropout=0.075):
|
35 |
super().__init__()
|
|
|
39 |
self.dropout = nn.Dropout(dropout)
|
40 |
self.linear = nn.Linear(self.config.hidden_size, self.num_labels)
|
41 |
self.crf = CRF(self.num_labels, batch_first=True)
|
|
|
42 |
def forward(self, input_ids, attention_mask):
|
43 |
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
44 |
seq_output = self.dropout(outputs[0])
|
|
|
46 |
tags = self.crf.decode(emissions, attention_mask.byte())
|
47 |
return tags, emissions
|
48 |
|
|
|
49 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
50 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
51 |
model = AutoModelCRF(model_name_or_path)
|
|
|
54 |
model = model.to(device)
|
55 |
model.eval()
|
56 |
|
|
|
|
|
57 |
def get_word_probabilities(text):
|
58 |
text = " ".join(text.split(" ")[:2048])
|
59 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
|
|
62 |
with torch.no_grad():
|
63 |
tags, emission = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
64 |
probs = torch.softmax(emission, dim=-1)[0, :, 1].cpu().numpy()
|
|
|
65 |
word_probs = []
|
66 |
word_colors = []
|
67 |
current_word = ""
|
68 |
current_probs = []
|
|
|
69 |
for token, prob in zip(tokens, probs):
|
70 |
if token in ["<s>", "</s>"]:
|
71 |
continue
|
|
|
73 |
if current_word and current_probs:
|
74 |
current_prob = sum(current_probs) / len(current_probs)
|
75 |
word_probs.append(current_prob)
|
76 |
+
color = ("green" if current_prob < 0.25 else "yellow" if current_prob < 0.5 else "orange" if current_prob < 0.75 else "red")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
word_colors.append(color)
|
|
|
78 |
current_word = token[1:] if token != "▁" else ""
|
79 |
current_probs = [prob]
|
80 |
else:
|
81 |
current_word += token
|
82 |
current_probs.append(prob)
|
|
|
83 |
if current_word and current_probs:
|
84 |
current_prob = sum(current_probs) / len(current_probs)
|
85 |
word_probs.append(current_prob)
|
86 |
+
color = ("green" if current_prob < 0.25 else "yellow" if current_prob < 0.5 else "orange" if current_prob < 0.75 else "red")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
word_colors.append(color)
|
|
|
88 |
word_probs = [float(p) for p in word_probs]
|
89 |
return word_probs, word_colors
|
90 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
def infer_and_log(text_input):
|
92 |
word_probs, word_colors = get_word_probabilities(text_input)
|
93 |
timestamp = datetime.datetime.now().isoformat()
|
94 |
submission_id = str(uuid.uuid4())
|
95 |
+
log_data = {"id": submission_id,"timestamp": timestamp,"input": text_input,"output_probs": word_probs}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
os.makedirs("logs", exist_ok=True)
|
97 |
log_file = f"logs/{timestamp.replace(':', '_')}.json"
|
98 |
with open(log_file, "w") as f:
|
99 |
json.dump(log_data, f, indent=2)
|
|
|
100 |
if HF_TOKEN and DATASET_CREATED:
|
101 |
try:
|
102 |
+
HfApi().upload_file(path_or_fileobj=log_file,path_in_repo=f"logs/{os.path.basename(log_file)}",repo_id=HF_DATASET_REPO,repo_type="dataset",token=HF_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
print(f"Uploaded log {submission_id}")
|
104 |
except Exception as e:
|
105 |
print(f"Error uploading log: {e}")
|
|
|
106 |
tokens = text_input.split()
|
107 |
+
formatted_output = " ".join(f'<span style="color:{color}">{token}</span>' for token, color in zip(tokens, word_colors))
|
|
|
|
|
|
|
108 |
return formatted_output
|
109 |
|
|
|
110 |
def clear_fields():
|
111 |
return "", ""
|
|
|
|
|
112 |
setup_hf_dataset()
|
113 |
|
|
|
114 |
with gr.Blocks() as app:
|
115 |
gr.Markdown("Machine Generated Text Detector")
|
|
|
116 |
with gr.Row():
|
117 |
input_box = gr.Textbox(label="Input Text", lines=10)
|
118 |
output_box = gr.HTML(label="Output Text")
|
|
|
119 |
with gr.Row():
|
120 |
submit_btn = gr.Button("Submit")
|
121 |
clear_btn = gr.Button("Clear")
|
|
|
|
|
122 |
submit_btn.click(fn=infer_and_log, inputs=input_box, outputs=output_box)
|
123 |
clear_btn.click(fn=clear_fields, outputs=[input_box, output_box])
|
124 |
+
|
125 |
if __name__ == "__main__":
|
126 |
app.launch()
|