Update app.py
Browse files
app.py
CHANGED
@@ -56,75 +56,75 @@ model = model.to(device)
|
|
56 |
model.eval()
|
57 |
|
58 |
# Inference function
|
59 |
-
# def get_word_classifications(text):
|
60 |
-
# text = " ".join(text.split(" ")[:2048])
|
61 |
-
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
62 |
-
# inputs = {k: v.to(device) for k, v in inputs.items()}
|
63 |
-
# tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
64 |
-
# with torch.no_grad():
|
65 |
-
# tags, _ = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
66 |
-
# word_tags = []
|
67 |
-
# current_word = ""
|
68 |
-
# current_tag = ""
|
69 |
-
# for token, tag in zip(tokens, tags[0]):
|
70 |
-
# if token in ["<s>", "</s>"]:
|
71 |
-
# continue
|
72 |
-
# if token.startswith("β"):
|
73 |
-
# if current_word:
|
74 |
-
# word_tags.append(str(current_tag))
|
75 |
-
# current_word = token[1:] if token != "β" else ""
|
76 |
-
# current_tag = tag
|
77 |
-
# else:
|
78 |
-
# current_word += token
|
79 |
-
# if current_word:
|
80 |
-
# word_tags.append(str(current_tag))
|
81 |
-
# return word_tags
|
82 |
-
|
83 |
def get_word_classifications(text):
|
84 |
text = " ".join(text.split(" ")[:2048])
|
85 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
86 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
87 |
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
88 |
-
|
89 |
with torch.no_grad():
|
90 |
-
tags,
|
91 |
-
|
92 |
word_tags = []
|
93 |
-
color_output = []
|
94 |
current_word = ""
|
95 |
-
|
96 |
-
|
97 |
-
for token, prob in zip(tokens, tags[0]):
|
98 |
if token in ["<s>", "</s>"]:
|
99 |
continue
|
100 |
if token.startswith("β"):
|
101 |
if current_word:
|
102 |
-
word_tags.append(
|
103 |
-
color = (
|
104 |
-
"green" if current_prob < 0.25 else
|
105 |
-
"yellow" if current_prob < 0.5 else
|
106 |
-
"orange" if current_prob < 0.75 else
|
107 |
-
"red"
|
108 |
-
)
|
109 |
-
color_output.append(f'<span style="color:{color}">{current_word}</span>')
|
110 |
current_word = token[1:] if token != "β" else ""
|
111 |
-
|
112 |
else:
|
113 |
current_word += token
|
114 |
-
current_prob = max(current_prob, prob)
|
115 |
-
|
116 |
if current_word:
|
117 |
-
word_tags.append(
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
|
129 |
|
130 |
# HF logging setup
|
@@ -140,7 +140,7 @@ def setup_hf_dataset():
|
|
140 |
|
141 |
# Main inference + logging function
|
142 |
def infer_and_log(text_input):
|
143 |
-
|
144 |
timestamp = datetime.datetime.now().isoformat()
|
145 |
submission_id = str(uuid.uuid4())
|
146 |
|
@@ -169,7 +169,7 @@ def infer_and_log(text_input):
|
|
169 |
except Exception as e:
|
170 |
print(f"Error uploading log: {e}")
|
171 |
|
172 |
-
return
|
173 |
|
174 |
def clear_fields():
|
175 |
return "", ""
|
|
|
56 |
model.eval()
|
57 |
|
58 |
# Inference function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def get_word_classifications(text):
|
60 |
text = " ".join(text.split(" ")[:2048])
|
61 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
62 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
63 |
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
|
|
64 |
with torch.no_grad():
|
65 |
+
tags, _ = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
|
|
66 |
word_tags = []
|
|
|
67 |
current_word = ""
|
68 |
+
current_tag = ""
|
69 |
+
for token, tag in zip(tokens, tags[0]):
|
|
|
70 |
if token in ["<s>", "</s>"]:
|
71 |
continue
|
72 |
if token.startswith("β"):
|
73 |
if current_word:
|
74 |
+
word_tags.append(str(current_tag))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
current_word = token[1:] if token != "β" else ""
|
76 |
+
current_tag = tag
|
77 |
else:
|
78 |
current_word += token
|
|
|
|
|
79 |
if current_word:
|
80 |
+
word_tags.append(str(current_tag))
|
81 |
+
return word_tags
|
82 |
+
|
83 |
+
# def get_word_classifications(text):
|
84 |
+
# text = " ".join(text.split(" ")[:2048])
|
85 |
+
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
86 |
+
# inputs = {k: v.to(device) for k, v in inputs.items()}
|
87 |
+
# tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
88 |
+
|
89 |
+
# with torch.no_grad():
|
90 |
+
# tags, emissions = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
91 |
+
|
92 |
+
# word_tags = []
|
93 |
+
# color_output = []
|
94 |
+
# current_word = ""
|
95 |
+
# current_prob = 0.0
|
96 |
+
|
97 |
+
# for token, prob in zip(tokens, tags[0]):
|
98 |
+
# if token in ["<s>", "</s>"]:
|
99 |
+
# continue
|
100 |
+
# if token.startswith("β"):
|
101 |
+
# if current_word:
|
102 |
+
# word_tags.append(round(current_prob, 3))
|
103 |
+
# color = (
|
104 |
+
# "green" if current_prob < 0.25 else
|
105 |
+
# "yellow" if current_prob < 0.5 else
|
106 |
+
# "orange" if current_prob < 0.75 else
|
107 |
+
# "red"
|
108 |
+
# )
|
109 |
+
# color_output.append(f'<span style="color:{color}">{current_word}</span>')
|
110 |
+
# current_word = token[1:] if token != "β" else ""
|
111 |
+
# current_prob = prob
|
112 |
+
# else:
|
113 |
+
# current_word += token
|
114 |
+
# current_prob = max(current_prob, prob)
|
115 |
+
|
116 |
+
# if current_word:
|
117 |
+
# word_tags.append(round(current_prob, 3))
|
118 |
+
# color = (
|
119 |
+
# "green" if current_prob < 0.25 else
|
120 |
+
# "yellow" if current_prob < 0.5 else
|
121 |
+
# "orange" if current_prob < 0.75 else
|
122 |
+
# "red"
|
123 |
+
# )
|
124 |
+
# color_output.append(f'<span style="color:{color}">{current_word}</span>')
|
125 |
|
126 |
+
# output = " ".join(color_output)
|
127 |
+
# return output, word_tags
|
128 |
|
129 |
|
130 |
# HF logging setup
|
|
|
140 |
|
141 |
# Main inference + logging function
|
142 |
def infer_and_log(text_input):
|
143 |
+
word_tags = get_word_classifications(text_input)
|
144 |
timestamp = datetime.datetime.now().isoformat()
|
145 |
submission_id = str(uuid.uuid4())
|
146 |
|
|
|
169 |
except Exception as e:
|
170 |
print(f"Error uploading log: {e}")
|
171 |
|
172 |
+
return "".join(word_tags)
|
173 |
|
174 |
def clear_fields():
|
175 |
return "", ""
|