Spaces:
Running
Running
File size: 17,828 Bytes
3447474 50f13c9 3447474 0456d9c 50f13c9 3447474 3f89022 3447474 3f89022 c5bcdee e849c49 3f89022 3447474 3f89022 50f13c9 c5bcdee b254d98 50f13c9 b254d98 50f13c9 043ab85 002d115 50f13c9 e347941 b254d98 50f13c9 e849c49 c5bcdee 2d306ed c5bcdee 2d306ed c5bcdee 2d306ed 3f89022 c5bcdee 3f89022 3447474 3f89022 c5bcdee 3f89022 c5bcdee b254d98 c5bcdee b254d98 c5bcdee b254d98 3447474 c5bcdee 3f89022 c5bcdee 3f89022 c5bcdee 3f89022 b254d98 c5bcdee 3f89022 002d115 3f89022 b254d98 3f89022 c5bcdee 3f89022 002d115 c5bcdee 002d115 61df640 002d115 c5bcdee 043ab85 50f13c9 3f89022 9b51e2f 002d115 9b1a61d 6fde7cb 3f89022 50f13c9 3447474 c5bcdee 254ef61 c5bcdee 3447474 50f13c9 c5bcdee 50f13c9 c5bcdee 3447474 c5bcdee 3447474 3f89022 3447474 c5bcdee 043ab85 50f13c9 254ef61 fa84412 c5bcdee 3f89022 3447474 c5bcdee 3447474 c5bcdee 3f89022 3447474 c5bcdee 3447474 c5bcdee 3447474 c5bcdee 3447474 c5bcdee 3447474 c5bcdee 3447474 3f89022 3447474 3f89022 3447474 002d115 50f13c9 3447474 c5bcdee 3447474 3f89022 c5bcdee 3447474 c5bcdee 3447474 50f13c9 9b1a61d 254ef61 c5bcdee 043ab85 50f13c9 043ab85 c5bcdee 043ab85 c5bcdee 043ab85 3447474 3f89022 3447474 fa84412 3447474 3f89022 3447474 c5bcdee 50f13c9 3447474 c5bcdee 3f89022 c5bcdee 3f89022 17640d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import os
# Disable problematic optimizations for ZeroGPU compatibility
os.environ["TORCHDYNAMO_DISABLE"] = "1"
os.environ["TORCH_COMPILE_DISABLE"] = "1"
os.environ["PYTORCH_DISABLE_CUDNN_BENCHMARK"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Check if we're in ZeroGPU or similar restricted environment
def is_restricted_environment():
return (
os.getenv("ZERO_GPU") or
"zero" in str(os.getenv("SPACE_ID", "")).lower() or
os.getenv("SPACES_ZERO_GPU") or
"spaces" in str(os.getenv("HOSTNAME", "")).lower()
)
# Disable Unsloth optimizations in restricted environments
if is_restricted_environment():
os.environ["UNSLOTH_DISABLE"] = "1"
os.environ["DISABLE_UNSLOTH"] = "1"
os.environ["UNSLOTH_IGNORE_ERRORS"] = "1"
os.environ["UNSLOTH_NO_COMPILE"] = "1"
print("🚀 ZeroGPU detected - Unsloth optimizations disabled for compatibility")
else:
print("🔧 Local environment detected - Unsloth optimizations enabled")
# Check if we're in ZeroGPU or similar restricted environment
def is_restricted_environment():
return (
os.getenv("ZERO_GPU") or
"zero" in str(os.getenv("SPACE_ID", "")).lower() or
os.getenv("SPACES_ZERO_GPU")
)
# Disable Unsloth optimizations in restricted environments
if is_restricted_environment():
os.environ["UNSLOTH_DISABLE"] = "1"
os.environ["DISABLE_UNSLOTH"] = "1"
os.environ["UNSLOTH_IGNORE_ERRORS"] = "1"
print("🚀 ZeroGPU detected - Unsloth optimizations disabled for compatibility")
import torch
import gradio as gr
import numpy as np
import spaces
import logging
from huggingface_hub import login
import threading
import time
torch._dynamo.config.disable = True
torch._dynamo.config.suppress_errors = True
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
hf_token = os.getenv("HF_TOKEN")
if hf_token:
login(token=hf_token)
# Global variables for model caching
_tts_model = None
_speakers_dict = None
_model_initialized = False
_initialization_in_progress = False
def get_speakers_dict():
"""Get speakers dictionary using the correct SDK structure"""
try:
# Import the Speakers class (not individual speakers)
from maliba_ai.config.settings import Speakers
# Access all 10 speakers through the Speakers class
speakers_dict = {
"Adama": Speakers.Adama,
"Moussa": Speakers.Moussa,
"Bourama": Speakers.Bourama,
"Modibo": Speakers.Modibo,
"Seydou": Speakers.Seydou,
"Amadou": Speakers.Amadou,
"Bakary": Speakers.Bakary,
"Ngolo": Speakers.Ngolo,
"Amara": Speakers.Amara,
"Ibrahima": Speakers.Ibrahima
}
logger.info(f"🎤 Successfully loaded {len(speakers_dict)} speakers: {list(speakers_dict.keys())}")
return speakers_dict
except Exception as e:
logger.error(f"❌ Failed to import Speakers class: {e}")
return {}
@spaces.GPU()
def initialize_model_once():
"""Initialize model exactly like your old working version"""
global _tts_model, _speakers_dict, _model_initialized, _initialization_in_progress
if _model_initialized:
logger.info("Model already initialized, returning existing instance")
return _tts_model, _speakers_dict
if _initialization_in_progress:
logger.info("Initialization already in progress, waiting...")
for _ in range(50):
time.sleep(0.1)
if _model_initialized:
return _tts_model, _speakers_dict
_initialization_in_progress = True
try:
logger.info("Initializing Bambara TTS model...")
start_time = time.time()
# Use the correct import path
from maliba_ai.tts.inference import BambaraTTSInference
model = BambaraTTSInference()
speakers = get_speakers_dict()
if not speakers:
raise ValueError("Failed to load speakers dictionary")
_tts_model = model
_speakers_dict = speakers
_model_initialized = True
elapsed = time.time() - start_time
logger.info(f"Model initialized successfully in {elapsed:.2f} seconds!")
return _tts_model, _speakers_dict
except Exception as e:
logger.error(f"Failed to initialize model: {e}")
_initialization_in_progress = False
raise e
finally:
_initialization_in_progress = False
def validate_inputs(text, temperature, top_k, top_p, max_tokens):
"""Same validation as your old version"""
if not text or not text.strip():
return False, "Please enter some Bambara text."
if not (0.001 <= temperature <= 2.0):
return False, "Temperature must be between 0.001 and 2.0"
if not (1 <= top_k <= 100):
return False, "Top-K must be between 1 and 100"
if not (0.1 <= top_p <= 1.0):
return False, "Top-P must be between 0.1 and 1.0"
return True, ""
@spaces.GPU()
def generate_speech(text, speaker_name, use_advanced, temperature, top_k, top_p, max_tokens):
"""Generate speech - exactly like your old working version"""
if not text.strip():
return None, "Please enter some Bambara text."
try:
tts, speakers = initialize_model_once()
if not tts or not speakers:
return None, "❌ Model not properly initialized"
if speaker_name not in speakers:
available_speakers = list(speakers.keys())
return None, f"❌ Speaker '{speaker_name}' not found. Available: {available_speakers}"
speaker = speakers[speaker_name]
logger.info(f"Using speaker: {speaker_name}")
if use_advanced:
is_valid, error_msg = validate_inputs(text, temperature, top_k, top_p, max_tokens)
if not is_valid:
return None, f"❌ {error_msg}"
waveform = tts.generate_speech(
text=text.strip(),
speaker_id=speaker,
temperature=temperature,
top_k=int(top_k),
top_p=top_p,
max_new_audio_tokens=int(max_tokens)
)
else:
waveform = tts.generate_speech(
text=text.strip(),
speaker_id=speaker
)
if waveform is None or waveform.size == 0:
return None, "Failed to generate audio. Please try again."
# Convert to numpy if it's a tensor
if isinstance(waveform, torch.Tensor):
waveform = waveform.cpu().numpy()
# Ensure proper audio format (convert float32 to int16 range but keep as float for Gradio)
if waveform.dtype == np.float32:
# Normalize to [-1, 1] range if needed
if np.max(np.abs(waveform)) > 1.0:
waveform = waveform / np.max(np.abs(waveform))
# Keep as float32 but ensure proper range for Gradio
waveform = np.clip(waveform, -1.0, 1.0)
sample_rate = 16000
return (sample_rate, waveform), f"✅ Audio generated successfully for speaker {speaker_name}"
except Exception as e:
logger.error(f"Speech generation failed: {e}")
return None, f"❌ Error: {str(e)}"
# Use available speakers (detect what's actually available, prioritize Bourama)
def get_speaker_names():
speakers = get_speakers_dict()
if speakers:
speaker_list = list(speakers.keys())
# Reorder to match preferred order (Bourama first)
preferred_order = ["Bourama", "Adama", "Moussa", "Modibo", "Seydou",
"Amadou", "Bakary", "Ngolo", "Ibrahima", "Amara"]
# Sort available speakers according to preferred order
ordered_speakers = []
for speaker in preferred_order:
if speaker in speaker_list:
ordered_speakers.append(speaker)
# Add any remaining speakers not in preferred list
for speaker in speaker_list:
if speaker not in ordered_speakers:
ordered_speakers.append(speaker)
logger.info(f"Available speakers: {ordered_speakers}")
return ordered_speakers
else:
# Final fallback with Bourama first
logger.warning("No speakers loaded, using fallback list")
return ["Bourama", "Adama", "Moussa", "Modibo", "Seydou"]
SPEAKER_NAMES = get_speaker_names()
# Examples representing ALL 10 speakers - with fallbacks for missing speakers
examples = [
["Aw ni ce", "Adama"], # Natural conversational greeting
["Mali bɛna diya kɔsɛbɛ, ka a da a kan baara bɛ ka kɛ.", "Moussa"], # Clear pronunciation for informative content
["Ne bɛ se ka sɛbɛnni yɛlɛma ka kɛ kuma ye", "Bourama"], # Most stable for educational content
["I ka kɛnɛ wa?", "Modibo"], # Expressive delivery for questions
["Lakɔli karamɔgɔw tun tɛ ka se ka sɛbɛnni kɛ ka ɲɛ walanda kan wa denmisɛnw tun tɛ ka se ka o sɛbɛnni ninnu ye, kuma tɛ ka u kalan. Denmisɛnw kɛra kunfinw ye.", "Adama"], # Natural conversational tone for longer explanation
["sigikafɔ kɔnɔ jamanaw ni ɲɔgɔn cɛ, olu ye a haminankow ye, wa o ko ninnu ka kan ka kɛ sariya ani tilennenya kɔnɔ.", "Seydou"], # Balanced characteristics for formal content
["Aw ni ce. Ne tɔgɔ ye Adama. Awɔ, ne ye maliden de ye. Aw Sanbɛ Sanbɛ. San min tɛ ɲinan ye, an bɛɛ ka jɛ ka o seli ɲɔgɔn fɛ, hɛɛrɛ ni lafiya la. Ala ka Mali suma. Ala ka Mali yiriwa. Ala ka Mali taa ɲɛ. Ala ka an ka seliw caya. Ala ka yafa an bɛɛ ma.", "Moussa"], # Clear pronunciation for heartfelt long message
["An dɔlakelen bɛ masike bilenman don ka tɔw gɛn.", "Bourama"], # Most stable for complex statement
["Aw ni ce. Seidu bɛ aw fo wa aw ka yafa a ma, ka da a kan tuma dɔw la kow ka can.", "Modibo"], # Expressive delivery for personal greeting
["To tɔ nantan ni lafiya, o ka fisa ni so fa dumuniba kɛlɛma ye.", "Amadou"], # Warm and friendly voice for wisdom saying
["Mali ye jamana ɲuman ye!", "Bakary"], # Deep, authoritative tone for patriotic statement
["An ka ɲɔgɔn dɛmɛ ka baara kɛ ɲɔgɔn fɛ", "Ngolo"], # Youthful and energetic for collaboration
["Hakili to yɔrɔ min na, sabali bɛ yen", "Ibrahima"], # Calm and measured for philosophical thought
["Dɔnko ɲuman ye, a bɛ dɔn mɔgɔ kɔnɔ", "Amara"], # Melodic and smooth for poetic expression
]
def get_safe_examples():
"""Get examples with speaker fallbacks for missing speakers"""
safe_examples = []
# Fallback mapping for missing speakers
fallback_speakers = {
"Amadou": "Adama", # Warm -> Natural conversational
"Bakary": "Modibo", # Authoritative -> Expressive
"Ngolo": "Adama", # Youthful -> Natural conversational
"Ibrahima": "Seydou", # Calm -> Balanced
"Amara": "Moussa" # Melodic -> Clear pronunciation
}
for text, speaker in examples:
# Use original speaker if available, otherwise use fallback
if speaker in SPEAKER_NAMES:
safe_examples.append([text, speaker])
elif speaker in fallback_speakers and fallback_speakers[speaker] in SPEAKER_NAMES:
safe_examples.append([text, fallback_speakers[speaker]])
else:
# Final fallback to first available speaker
safe_examples.append([text, SPEAKER_NAMES[0]])
return safe_examples
def build_interface():
"""Build the Gradio interface - simplified like your old working version"""
with gr.Blocks(title="Bambara TTS - MALIBA-AI") as demo:
gr.Markdown("""
# 🎤 Bambara Text-to-Speech
**Powered by MALIBA-AI** | *First Open-Source Bambara TTS*
Convert Bambara text to natural-sounding speech using our state-of-the-art neural TTS system.
**Bambara** is spoken by millions of people in Mali and West Africa.
""")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="📝 Bambara Text",
placeholder="Type your Bambara text here...",
lines=3,
max_lines=10,
value="I ni ce"
)
speaker_dropdown = gr.Dropdown(
choices=SPEAKER_NAMES,
value="Bourama" if "Bourama" in SPEAKER_NAMES else SPEAKER_NAMES[0],
label="🗣️ Speaker Voice",
info=f"Choose from {len(SPEAKER_NAMES)} authentic Bambara voices"
)
generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
with gr.Column(scale=1):
use_advanced = gr.Checkbox(
label="⚙️ Use Advanced Settings",
value=False,
info="Enable to customize generation parameters"
)
with gr.Group(visible=False) as advanced_group:
gr.Markdown("**Advanced Parameters:**")
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.8,
step=0.1,
label="Temperature",
info="Higher = more varied"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=5,
label="Top-K"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-P"
)
max_tokens = gr.Slider(
minimum=256,
maximum=4096,
value=2048,
step=256,
label="Max Length"
)
gr.Markdown("### 🔊 Generated Audio")
audio_output = gr.Audio(
label="Generated Speech",
type="numpy",
interactive=False,
format="wav"
)
status_output = gr.Textbox(
label="Status",
interactive=False,
show_label=False,
container=False
)
with gr.Accordion("Try These Examples", open=True):
def load_example(text, speaker):
return text, speaker, False, 0.8, 50, 0.9, 2048
gr.Markdown("**Click any example below:**")
# Use safe examples with fallbacks for missing speakers
safe_examples = get_safe_examples()
for i, (text, speaker) in enumerate(safe_examples):
btn = gr.Button(f"{text[:30]}{'...' if len(text) > 30 else ''}", size="sm")
btn.click(
fn=lambda t=text, s=speaker: load_example(t, s),
outputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens]
)
with gr.Accordion("About", open=False):
gr.Markdown(f"""
## About MALIBA-AI Bambara TTS
- **🎯 Purpose**: First open-source Text-to-Speech system for Bambara language
- **🗣️ Speakers**: {len(SPEAKER_NAMES)} authentic Bambara voices
- **🔊 Quality**: 16kHz neural speech synthesis
- **⚡ Performance**: Model loads once and stays in memory
- **📱 Usage**: Educational, accessibility, and cultural preservation
### 🎭 Available Speakers:
{', '.join(SPEAKER_NAMES)}
**License**: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)
---
**MALIBA-AI Mission**: Ensuring no Malian is left behind by technological advances 🇲🇱
""")
def toggle_advanced(use_adv):
return gr.Group(visible=use_adv)
use_advanced.change(
fn=toggle_advanced,
inputs=[use_advanced],
outputs=[advanced_group]
)
generate_btn.click(
fn=generate_speech,
inputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens],
outputs=[audio_output, status_output],
show_progress=True
)
text_input.submit(
fn=generate_speech,
inputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens],
outputs=[audio_output, status_output],
show_progress=True
)
return demo
def main():
"""Main function to launch the Gradio interface"""
logger.info("Starting Bambara TTS Gradio interface.")
interface = build_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
logger.info("Gradio interface launched successfully.")
if __name__ == "__main__":
main() |