Spaces:
Running
Running
File size: 17,328 Bytes
3447474 043ab85 3447474 9b51e2f 043ab85 3447474 3f89022 3447474 3f89022 e849c49 3f89022 3447474 3f89022 9b51e2f 043ab85 b254d98 043ab85 b254d98 043ab85 b254d98 043ab85 b254d98 043ab85 e849c49 043ab85 9b51e2f b254d98 9b51e2f b254d98 043ab85 9b51e2f b254d98 043ab85 b254d98 043ab85 b254d98 043ab85 b254d98 9b51e2f 043ab85 9b51e2f 043ab85 9b51e2f 043ab85 3f89022 043ab85 3f89022 3447474 3f89022 043ab85 3f89022 043ab85 3f89022 043ab85 b254d98 043ab85 b254d98 043ab85 b254d98 3447474 043ab85 3f89022 043ab85 3f89022 043ab85 3f89022 043ab85 3f89022 b254d98 043ab85 3f89022 b254d98 3f89022 043ab85 3f89022 043ab85 9b51e2f 3f89022 9b51e2f 3f89022 3447474 254ef61 043ab85 3447474 043ab85 9b51e2f 043ab85 3447474 043ab85 3447474 3f89022 3447474 043ab85 254ef61 fa84412 043ab85 3f89022 3447474 043ab85 3447474 043ab85 3f89022 3447474 043ab85 3447474 043ab85 3447474 043ab85 3447474 043ab85 3447474 043ab85 3447474 3f89022 3447474 3f89022 3447474 043ab85 3447474 043ab85 3447474 3f89022 043ab85 3447474 043ab85 3447474 043ab85 254ef61 043ab85 e849c49 043ab85 3447474 3f89022 043ab85 3447474 fa84412 3447474 043ab85 3447474 043ab85 3447474 3f89022 3447474 043ab85 254ef61 043ab85 3447474 043ab85 3447474 043ab85 3f89022 043ab85 3f89022 3447474 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import os
# Set environment variables BEFORE any imports
os.environ["TORCHDYNAMO_DISABLE"] = "1"
os.environ["TORCH_COMPILE_DISABLE"] = "1"
os.environ["PYTORCH_DISABLE_CUDNN_BENCHMARK"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Set CUDA environment to help with unsloth GPU detection (only if not ZeroGPU)
if not os.getenv("ZERO_GPU"):
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Force GPU visibility
os.environ["FORCE_CUDA"] = "1" # Force CUDA usage
import torch
import gradio as gr
import numpy as np
import spaces
import logging
from huggingface_hub import login
import time
torch._dynamo.config.disable = True
torch._dynamo.config.suppress_errors = True
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
hf_token = os.getenv("HF_TOKEN")
if hf_token:
login(token=hf_token)
# Check GPU availability (but don't initialize CUDA yet in ZeroGPU)
if os.getenv("ZERO_GPU"):
device = "cuda" # Assume CUDA in ZeroGPU
logger.info("ZeroGPU environment detected - CUDA will be available in decorated functions")
elif torch.cuda.is_available():
device = "cuda"
logger.info("Using CUDA for inference.")
elif torch.backends.mps.is_available():
device = "mps"
logger.info("Using MPS for inference.")
else:
device = "cpu"
logger.info("Using CPU for inference.")
def get_speakers_dict():
"""Get speakers dictionary using the new package structure"""
try:
from maliba_ai.config.settings import Speakers
return {
"Adama": Speakers.Adama,
"Moussa": Speakers.Moussa,
"Bourama": Speakers.Bourama,
"Modibo": Speakers.Modibo,
"Seydou": Speakers.Seydou,
"Amadou": Speakers.Amadou,
"Bakary": Speakers.Bakary,
"Ngolo": Speakers.Ngolo,
"Ibrahima": Speakers.Ibrahima,
"Amara": Speakers.Amara
}
except Exception as e:
logger.error(f"Failed to import all speakers: {e}")
# Fallback to core speakers only
try:
from maliba_ai.config.settings import Speakers
return {
"Adama": Speakers.Adama,
"Moussa": Speakers.Moussa,
"Bourama": Speakers.Bourama,
"Modibo": Speakers.Modibo,
"Seydou": Speakers.Seydou
}
except:
logger.error("Failed to import even core speakers")
return {}
def initialize_tts_model():
"""Initialize TTS model globally - only if we're not in ZeroGPU environment"""
try:
# Check if we're in ZeroGPU environment - don't initialize globally
if os.getenv("ZERO_GPU") or "zero" in str(os.getenv("SPACE_ID", "")).lower():
logger.info("ZeroGPU environment detected - skipping global initialization")
return None
# Only try global init if CUDA is actually available and initialized
if not torch.cuda.is_available():
logger.info("CUDA not available - skipping global initialization")
return None
logger.info("Attempting global TTS model initialization...")
start_time = time.time()
# Import and initialize the TTS model
from maliba_ai.tts import BambaraTTSInference
# Initialize model
model = BambaraTTSInference()
elapsed = time.time() - start_time
logger.info(f"TTS Model initialized successfully in {elapsed:.2f} seconds!")
return model
except Exception as e:
logger.error(f"Failed to initialize TTS model globally: {e}")
logger.info("Model will be initialized on first request with GPU decorator")
return None
# Initialize speakers dictionary (this doesn't require GPU)
speakers_dict = get_speakers_dict()
logger.info(f"Available speakers: {list(speakers_dict.keys())}")
# Try to initialize model globally only if not in ZeroGPU environment
tts_model = initialize_tts_model()
def validate_inputs(text, temperature, top_k, top_p, max_tokens):
"""Validate user inputs"""
if not text or not text.strip():
return False, "Please enter some Bambara text."
if not (0.001 <= temperature <= 2.0):
return False, "Temperature must be between 0.001 and 2.0"
if not (1 <= top_k <= 100):
return False, "Top-K must be between 1 and 100"
if not (0.1 <= top_p <= 1.0):
return False, "Top-P must be between 0.1 and 1.0"
if len(text.strip()) > 1000:
return False, "Text is too long. Please use shorter text (max 1000 characters)."
return True, ""
@spaces.GPU()
def generate_speech(text, speaker_name, use_advanced, temperature, top_k, top_p, max_tokens):
"""Generate speech - with fallback initialization if global init failed"""
global tts_model
if not text.strip():
return None, "Please enter some Bambara text."
try:
# If global initialization failed, try to initialize here with GPU decorator
if tts_model is None:
logger.info("Global model initialization failed, initializing with GPU decorator...")
from maliba_ai.tts import BambaraTTSInference
tts_model = BambaraTTSInference()
logger.info("Model initialized successfully with GPU decorator!")
if not speakers_dict:
return None, "❌ Speakers not properly loaded"
if speaker_name not in speakers_dict:
available_speakers = list(speakers_dict.keys())
return None, f"❌ Speaker '{speaker_name}' not found. Available: {available_speakers}"
speaker = speakers_dict[speaker_name]
logger.info(f"Generating speech with speaker: {speaker_name}")
# Validate inputs if using advanced settings
if use_advanced:
is_valid, error_msg = validate_inputs(text, temperature, top_k, top_p, max_tokens)
if not is_valid:
return None, f"❌ {error_msg}"
waveform = tts_model.generate_speech(
text=text.strip(),
speaker_id=speaker,
temperature=temperature,
top_k=int(top_k),
top_p=top_p,
max_new_audio_tokens=int(max_tokens)
)
else:
# Use default settings
waveform = tts_model.generate_speech(
text=text.strip(),
speaker_id=speaker
)
if waveform is None or waveform.size == 0:
return None, "❌ Failed to generate audio. Please try again with different text."
# Ensure waveform is in correct format
if isinstance(waveform, torch.Tensor):
waveform = waveform.cpu().numpy()
# Normalize audio to prevent clipping
if np.max(np.abs(waveform)) > 0:
waveform = waveform / np.max(np.abs(waveform)) * 0.9
sample_rate = 16000
return (sample_rate, waveform), f"✅ Audio generated successfully for speaker {speaker_name}"
except Exception as e:
logger.error(f"Speech generation failed: {e}", exc_info=True)
return None, f"❌ Error: {str(e)}"
# Get available speakers for dropdown
SPEAKER_NAMES = list(speakers_dict.keys()) if speakers_dict else ["Adama", "Moussa", "Bourama", "Modibo", "Seydou"]
# Examples with variety of lengths and speakers matched to content
examples = [
["Aw ni ce", "Adama"], # Natural conversational greeting
["Mali bɛna diya kɔsɛbɛ, ka a da a kan baara bɛ ka kɛ.", "Bakary"], # Authoritative tone for serious topic
["Ne bɛ se ka sɛbɛnni yɛlɛma ka kɛ kuma ye", "Moussa"], # Clear pronunciation for education
["I ka kɛnɛ wa?", "Ngolo"], # Youthful energy for casual question
["Lakɔli karamɔgɔw tun tɛ ka se ka sɛbɛnni kɛ ka ɲɛ walanda kan wa denmisɛnw tun tɛ ka se ka o sɛbɛnni ninnu ye, kuma tɛ ka u kalan. Denmisɛnw kɛra kunfinw ye.", "Bourama"], # Most stable for long educational text
["sigikafɔ kɔnɔ jamanaw ni ɲɔgɔn cɛ, olu ye a haminankow ye, wa o ko ninnu ka kan ka kɛ sariya ani tilennenya kɔnɔ.", "Ibrahima"], # Calm and measured for formal text
["Aw ni ce. Ne tɔgɔ ye Adama. Awɔ, ne ye maliden de ye. Aw Sanbɛ Sanbɛ. San min tɛ ɲinan ye, an bɛɛ ka jɛ ka o seli ɲɔgɔn fɛ, hɛɛrɛ ni lafiya la. Ala ka Mali suma. Ala ka Mali yiriwa. Ala ka Mali taa ɲɛ. Ala ka an ka seliw caya. Ala ka yafa an bɛɛ ma.", "Amara"], # Melodic and smooth for heartfelt message
["An dɔlakelen bɛ masike bilenman don ka tɔw gɛn.", "Modibo"], # Expressive delivery for dramatic statement
["Aw ni ce. Seidu bɛ aw fo wa aw ka yafa a ma, ka da a kan tuma dɔw la kow ka can.", "Amadou"], # Warm and friendly greeting
["Bamanankan ye kan ɲuman ye", "Seydou"], # Balanced characteristics for simple statement
]
def build_interface():
"""Build the Gradio interface for Bambara TTS"""
with gr.Blocks(
title="Bambara TTS - MALIBA-AI",
theme=gr.themes.Soft(),
css="""
.main-header { text-align: center; margin-bottom: 2rem; }
.status-box { margin-top: 1rem; }
"""
) as demo:
with gr.Row():
gr.Markdown(f"""
# 🎤 Bambara Text-to-Speech
**Powered by MALIBA-AI** | *First Open-Source Bambara TTS*
Convert Bambara text to natural-sounding speech using our state-of-the-art neural TTS system.
**Bambara** is spoken by millions of people in Mali and West Africa 🌍
**Status**: {'✅ Model pre-loaded' if tts_model is not None else '⏳ Model loads on first request (ZeroGPU optimized)'}
""", elem_classes=["main-header"])
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="📝 Bambara Text",
placeholder="I ni ce... (Type your Bambara text here)",
lines=4,
max_lines=8,
value="I ni ce"
)
speaker_dropdown = gr.Dropdown(
choices=SPEAKER_NAMES,
value=SPEAKER_NAMES[0] if SPEAKER_NAMES else "Bourama", # Default to most stable speaker
label="🗣️ Speaker Voice",
info=f"Choose from {len(SPEAKER_NAMES)} authentic voices (Bourama recommended for best quality)"
)
generate_btn = gr.Button(
"🎵 Generate Speech",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
use_advanced = gr.Checkbox(
label="⚙️ Advanced Settings",
value=False,
info="Customize generation parameters"
)
with gr.Group(visible=False) as advanced_group:
gr.Markdown("**🔧 Advanced Parameters:**")
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.8,
step=0.1,
label="Temperature",
info="Higher = more varied speech"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=50,
step=5,
label="Top-K",
info="Vocabulary selection size"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-P",
info="Nucleus sampling threshold"
)
max_tokens = gr.Slider(
minimum=256,
maximum=4096,
value=2048,
step=256,
label="Max Audio Length",
info="Maximum audio duration"
)
gr.Markdown("### 🔊 Generated Audio")
audio_output = gr.Audio(
label="Generated Speech",
type="numpy",
interactive=False,
show_download_button=True
)
status_output = gr.Textbox(
label="Status",
interactive=False,
show_label=False,
container=False,
elem_classes=["status-box"]
)
with gr.Accordion("📚 Try These Examples", open=True):
def load_example(text, speaker):
return text, speaker, False, 0.8, 50, 0.9, 2048
gr.Markdown("**Click any example below to try it:**")
with gr.Row():
for i, (text, speaker) in enumerate(examples[:5]):
btn = gr.Button(
f"🔹 {text[:25]}{'...' if len(text) > 25 else ''}",
size="sm"
)
btn.click(
fn=lambda t=text, s=speaker: load_example(t, s),
outputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens]
)
with gr.Row():
for i, (text, speaker) in enumerate(examples[5:]):
btn = gr.Button(
f"🔹 {text[:25]}{'...' if len(text) > 25 else ''}",
size="sm"
)
btn.click(
fn=lambda t=text, s=speaker: load_example(t, s),
outputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens]
)
with gr.Accordion("ℹ️ About", open=False):
gr.Markdown(f"""
## About MALIBA-AI Bambara TTS
- **🎯 Purpose**: First open-source Text-to-Speech system for Bambara language
- **🗣️ Speakers**: {len(SPEAKER_NAMES)} different authentic voices
- **🔊 Quality**: 16kHz neural speech synthesis
- **⚡ Performance**: Optimized for real-time generation
- **📱 Usage**: Educational, accessibility, and cultural preservation
### 🎭 Speaker Characteristics:
- **Bourama**: Most stable and accurate (recommended)
- **Adama**: Natural conversational tone
- **Moussa**: Clear pronunciation for educational content
- **Modibo**: Expressive delivery for storytelling
- **Seydou**: Balanced characteristics for general use
- **Amadou**: Warm and friendly voice
- **Bakary**: Deep, authoritative tone
- **Ngolo**: Youthful and energetic
- **Ibrahima**: Calm and measured delivery
- **Amara**: Melodic and smooth
**Model Architecture**: Built on state-of-the-art neural TTS with Bambara-specific optimizations
**License**: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)
---
**MALIBA-AI Mission**: Ensuring no Malian is left behind by technological advances 🇲🇱
""")
# Event handlers
def toggle_advanced(use_adv):
return gr.Group(visible=use_adv)
use_advanced.change(
fn=toggle_advanced,
inputs=[use_advanced],
outputs=[advanced_group]
)
# Generate speech on button click
generate_btn.click(
fn=generate_speech,
inputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens],
outputs=[audio_output, status_output],
show_progress=True
)
# Generate speech on Enter key
text_input.submit(
fn=generate_speech,
inputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens],
outputs=[audio_output, status_output],
show_progress=True
)
return demo
def main():
"""Main function to launch the Gradio interface"""
logger.info("Starting MALIBA-AI Bambara TTS Gradio interface...")
# Build interface
interface = build_interface()
# Launch interface
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)
logger.info("Gradio interface launched successfully!")
if __name__ == "__main__":
main() |