File size: 15,819 Bytes
3447474
 
4925aa8
3447474
 
 
 
 
4925aa8
0456d9c
 
 
 
 
 
 
 
4925aa8
0456d9c
 
 
 
 
 
 
 
 
3447474
3f89022
 
 
3447474
3f89022
c5bcdee
e849c49
3f89022
3447474
 
 
 
 
 
3f89022
 
 
 
4925aa8
c5bcdee
 
 
 
b254d98
 
50f13c9
b254d98
043ab85
50f13c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e347941
b254d98
50f13c9
 
e849c49
c5bcdee
 
be36062
c5bcdee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be36062
 
 
2d306ed
 
 
 
 
 
be36062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d306ed
be36062
2d306ed
c5bcdee
2d306ed
3f89022
 
c5bcdee
3f89022
 
 
3447474
 
3f89022
 
 
 
 
 
 
 
 
 
 
c5bcdee
3f89022
 
 
 
c5bcdee
b254d98
c5bcdee
 
b254d98
c5bcdee
 
b254d98
3447474
c5bcdee
 
3f89022
 
 
 
 
 
c5bcdee
3f89022
 
 
 
 
 
 
 
c5bcdee
3f89022
 
 
 
b254d98
c5bcdee
3f89022
002d115
 
 
 
 
 
 
 
 
 
3f89022
b254d98
3f89022
 
c5bcdee
3f89022
 
4925aa8
c5bcdee
 
002d115
 
4925aa8
002d115
 
 
 
 
 
 
 
 
 
 
 
 
 
61df640
4925aa8
002d115
 
c5bcdee
 
043ab85
4925aa8
3f89022
4925aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
3f89022
 
50f13c9
 
 
 
 
4925aa8
 
 
 
 
50f13c9
 
 
 
 
 
 
 
 
 
 
 
3447474
c5bcdee
254ef61
b6cb99b
c5bcdee
b6cb99b
3447474
b6cb99b
c5bcdee
b6cb99b
c5bcdee
 
 
3447474
 
 
 
 
c5bcdee
 
 
3447474
3f89022
 
3447474
 
c5bcdee
043ab85
50f13c9
254ef61
fa84412
c5bcdee
3f89022
3447474
 
c5bcdee
3447474
c5bcdee
3f89022
3447474
 
c5bcdee
3447474
 
 
 
 
 
 
c5bcdee
3447474
 
 
 
 
 
 
c5bcdee
3447474
 
 
 
 
 
 
c5bcdee
3447474
 
 
 
 
 
 
c5bcdee
3447474
3f89022
3447474
3f89022
3447474
 
 
002d115
50f13c9
3447474
 
 
 
 
 
c5bcdee
3447474
3f89022
c5bcdee
3447474
 
 
c5bcdee
3447474
50f13c9
 
 
 
9b1a61d
 
 
 
 
254ef61
c5bcdee
043ab85
 
 
b6cb99b
 
 
 
043ab85
c5bcdee
f881cfd
043ab85
 
 
 
 
 
3447474
3f89022
3447474
 
fa84412
3447474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f89022
3447474
 
 
 
c5bcdee
50f13c9
3447474
 
 
 
c5bcdee
3f89022
 
c5bcdee
3f89022
 
17640d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import os


os.environ["TORCHDYNAMO_DISABLE"] = "1"
os.environ["TORCH_COMPILE_DISABLE"] = "1"
os.environ["PYTORCH_DISABLE_CUDNN_BENCHMARK"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"


def is_restricted_environment():
    return (
        os.getenv("ZERO_GPU") or 
        "zero" in str(os.getenv("SPACE_ID", "")).lower() or
        os.getenv("SPACES_ZERO_GPU") or
        "spaces" in str(os.getenv("HOSTNAME", "")).lower()
    )


if is_restricted_environment():
    os.environ["UNSLOTH_DISABLE"] = "1"
    os.environ["DISABLE_UNSLOTH"] = "1" 
    os.environ["UNSLOTH_IGNORE_ERRORS"] = "1"
    os.environ["UNSLOTH_NO_COMPILE"] = "1"
    print("🚀 ZeroGPU detected - Unsloth optimizations disabled for compatibility")
else:
    print("🔧 Local environment detected - Unsloth optimizations enabled")

import torch
import gradio as gr
import numpy as np
import spaces
import logging
from huggingface_hub import login
import threading
import time

torch._dynamo.config.disable = True
torch._dynamo.config.suppress_errors = True

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

hf_token = os.getenv("HF_TOKEN")
if hf_token:
    login(token=hf_token)


_tts_model = None
_speakers_dict = None
_model_initialized = False
_initialization_in_progress = False

def get_speakers_dict():
    """Get speakers dictionary using the correct SDK structure"""
    try:
        from maliba_ai.config.settings import Speakers
        speakers_dict = {
            "Adama": Speakers.Adama,
            "Moussa": Speakers.Moussa,
            "Bourama": Speakers.Bourama,
            "Modibo": Speakers.Modibo,
            "Seydou": Speakers.Seydou,
            "Amadou": Speakers.Amadou,
            "Bakary": Speakers.Bakary,
            "Ngolo": Speakers.Ngolo,
            "Amara": Speakers.Amara,
            "Ibrahima": Speakers.Ibrahima
        }
        
        logger.info(f"🎤 Successfully loaded {len(speakers_dict)} speakers: {list(speakers_dict.keys())}")
        return speakers_dict
        
    except Exception as e:
        logger.error(f"❌ Failed to import Speakers class: {e}")
        return {}

@spaces.GPU()
def initialize_model_once():
    """Initialize model with retry logic for Unsloth failures"""
    global _tts_model, _speakers_dict, _model_initialized, _initialization_in_progress
    
    if _model_initialized:
        logger.info("Model already initialized, returning existing instance")
        return _tts_model, _speakers_dict
    
    if _initialization_in_progress:
        logger.info("Initialization already in progress, waiting...")
        for _ in range(50): 
            time.sleep(0.1)
            if _model_initialized:
                return _tts_model, _speakers_dict
    
    _initialization_in_progress = True
    
    max_retries = 2
    retry_delay = 5  # seconds
    
    try:
        logger.info("Initializing Bambara TTS model...")
        start_time = time.time()
        
        from maliba_ai.tts.inference import BambaraTTSInference
        
        for attempt in range(max_retries):
            try:
                model = BambaraTTSInference()
                speakers = get_speakers_dict()
                
                if not speakers:
                    raise ValueError("Failed to load speakers dictionary")
                
                _tts_model = model
                _speakers_dict = speakers
                _model_initialized = True
                
                elapsed = time.time() - start_time
                logger.info(f"Model initialized successfully in {elapsed:.2f} seconds!")
                return _tts_model, _speakers_dict
                
            except Exception as e:
                if "unsloth_compiled_module_qwen2" in str(e) and attempt < max_retries - 1:
                    logger.warning(f"Unsloth compilation failed, retrying in {retry_delay} seconds... (attempt {attempt + 1}/{max_retries})")
                    time.sleep(retry_delay)
                else:
                    raise e
                    
    except Exception as e:
        logger.error(f"Failed to initialize model after {max_retries} attempts: {e}")
        raise e
    finally:
        _initialization_in_progress = False

def validate_inputs(text, temperature, top_k, top_p, max_tokens):
    """Same validation as your old version"""
    if not text or not text.strip():
        return False, "Please enter some Bambara text."
    
    if not (0.001 <= temperature <= 2.0):
        return False, "Temperature must be between 0.001 and 2.0"
    
    if not (1 <= top_k <= 100):
        return False, "Top-K must be between 1 and 100"
    
    if not (0.1 <= top_p <= 1.0):
        return False, "Top-P must be between 0.1 and 1.0"
    
    return True, ""

@spaces.GPU()
def generate_speech(text, speaker_name, use_advanced, temperature, top_k, top_p, max_tokens):
    """Generate speech - exactly like your old working version"""
    if not text.strip():
        return None, "Please enter some Bambara text."
    
    try:
        tts, speakers = initialize_model_once()
        
        if not tts or not speakers:
            return None, "❌ Model not properly initialized"
        
        if speaker_name not in speakers:
            available_speakers = list(speakers.keys())
            return None, f"❌ Speaker '{speaker_name}' not found. Available: {available_speakers}"
        
        speaker = speakers[speaker_name]
        logger.info(f"Using speaker: {speaker_name}")
        
        if use_advanced:
            is_valid, error_msg = validate_inputs(text, temperature, top_k, top_p, max_tokens)
            if not is_valid:
                return None, f"❌ {error_msg}"
            
            waveform = tts.generate_speech(
                text=text.strip(),
                speaker_id=speaker,
                temperature=temperature,
                top_k=int(top_k),
                top_p=top_p,
                max_new_audio_tokens=int(max_tokens)
            )
        else:
            waveform = tts.generate_speech(
                text=text.strip(),
                speaker_id=speaker
            )
        
        if waveform is None or waveform.size == 0:
            return None, "Failed to generate audio. Please try again."
        
        if isinstance(waveform, torch.Tensor):
            waveform = waveform.cpu().numpy()
        
        if waveform.dtype == np.float32:
            # Normalize to [-1, 1] range if needed
            if np.max(np.abs(waveform)) > 1.0:
                waveform = waveform / np.max(np.abs(waveform))
            # Keep as float32 but ensure proper range for Gradio
            waveform = np.clip(waveform, -1.0, 1.0)
        
        sample_rate = 16000
        return (sample_rate, waveform), f"✅ Audio generated successfully for speaker {speaker_name}"
        
    except Exception as e:
        logger.error(f"Speech generation failed: {e}")
        return None, f"❌ Error: {str(e)}"


def get_speaker_names():
    speakers = get_speakers_dict()
    if speakers:
        speaker_list = list(speakers.keys())

        preferred_order = ["Bourama", "Adama", "Moussa", "Modibo", "Seydou", 
                          "Amadou", "Bakary", "Ngolo", "Ibrahima", "Amara"]
        
        ordered_speakers = []
        for speaker in preferred_order:
            if speaker in speaker_list:
                ordered_speakers.append(speaker)
        
        for speaker in speaker_list:
            if speaker not in ordered_speakers:
                ordered_speakers.append(speaker)
                
        logger.info(f"Available speakers: {ordered_speakers}")
        return ordered_speakers
    else:

        logger.warning("No speakers loaded, using fallback list")
        return ["Bourama", "Adama", "Moussa", "Modibo", "Seydou"]

SPEAKER_NAMES = get_speaker_names()


examples = [
    ["Aw ni ce", "Adama"],  
    ["Mali bɛna diya kɔsɛbɛ, ka a da a kan baara bɛ ka kɛ.", "Moussa"],  
    ["Ne bɛ se ka sɛbɛnni yɛlɛma ka kɛ kuma ye", "Bourama"], 
    ["I ka kɛnɛ wa?", "Modibo"], 
    ["Lakɔli karamɔgɔw tun tɛ ka se ka sɛbɛnni kɛ ka ɲɛ walanda kan wa denmisɛnw tun tɛ ka se ka o sɛbɛnni ninnu ye, kuma tɛ ka u kalan. Denmisɛnw kɛra kunfinw ye.", "Adama"],  
    ["sigikafɔ kɔnɔ jamanaw ni ɲɔgɔn cɛ, olu ye a haminankow ye, wa o ko ninnu ka kan ka kɛ sariya ani tilennenya kɔnɔ.", "Seydou"],  
    ["Aw ni ce. Ne tɔgɔ ye Adama. Awɔ, ne ye maliden de ye. Aw Sanbɛ Sanbɛ. San min tɛ ɲinan ye, an bɛɛ ka jɛ ka o seli ɲɔgɔn fɛ, hɛɛrɛ ni lafiya la. Ala ka Mali suma. Ala ka Mali yiriwa. Ala ka Mali taa ɲɛ. Ala ka an ka seliw caya. Ala ka yafa an bɛɛ ma.", "Moussa"],  
    ["An dɔlakelen bɛ masike bilenman don ka tɔw gɛn.", "Bourama"],  
    ["Aw ni ce. Seidu bɛ aw fo wa aw ka yafa a ma, ka da a kan tuma dɔw la kow ka can.", "Modibo"],  
    ["To tɔ nantan ni lafiya, o ka fisa ni so fa dumuniba kɛlɛma ye.", "Amadou"],  
    ["Mali ye jamana ɲuman ye!", "Bakary"],  
    ["An ka ɲɔgɔn dɛmɛ ka baara kɛ ɲɔgɔn fɛ", "Ngolo"],  
    ["Hakili to yɔrɔ min na, sabali bɛ yen", "Ibrahima"],  
    ["Dɔnko ɲuman ye, a bɛ dɔn mɔgɔ kɔnɔ", "Amara"],  
]

def get_safe_examples():
    """Get examples with speaker fallbacks for missing speakers"""
    safe_examples = []
    
    fallback_speakers = {
        "Amadou": "Adama",    
        "Bakary": "Modibo",   
        "Ngolo": "Adama",    
        "Ibrahima": "Seydou", 
        "Amara": "Moussa"     
    }
    
    for text, speaker in examples:
        if speaker in SPEAKER_NAMES:
            safe_examples.append([text, speaker])
        elif speaker in fallback_speakers and fallback_speakers[speaker] in SPEAKER_NAMES:
            safe_examples.append([text, fallback_speakers[speaker]])
        else:
            safe_examples.append([text, SPEAKER_NAMES[0]])
    
    return safe_examples

def build_interface():
    """Build the Gradio interface - simplified like your old working version"""
    
    with gr.Blocks(title="Bambara TTS - EXPERIMENTAL") as demo:
        gr.Markdown("""
        # 🎤 Bambara Text-to-Speech ⚠️ EXPERIMENTAL
        
        **Powered by MALIBA-AI**
        
        Convert Bambara text to speech. This model is currently experimental.
        
        **Bambara** is spoken by millions of people in Mali and West Africa.
        """)

        with gr.Row():
            with gr.Column(scale=2):
                text_input = gr.Textbox(
                    label="📝 Bambara Text",
                    placeholder="Type your Bambara text here...",
                    lines=3,
                    max_lines=10,
                    value="I ni ce"
                )
                
                speaker_dropdown = gr.Dropdown(
                    choices=SPEAKER_NAMES,
                    value="Bourama" if "Bourama" in SPEAKER_NAMES else SPEAKER_NAMES[0],
                    label="🗣️ Speaker Voice",
                    info=f"Choose from {len(SPEAKER_NAMES)} authentic Bambara voices"
                )
                
                generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
                
            with gr.Column(scale=1):
                use_advanced = gr.Checkbox(
                    label="⚙️ Use Advanced Settings", 
                    value=False,
                    info="Enable to customize generation parameters"
                )
                
                with gr.Group(visible=False) as advanced_group:
                    gr.Markdown("**Advanced Parameters:**")
                    
                    temperature = gr.Slider(
                        minimum=0.1, 
                        maximum=2.0, 
                        value=0.8, 
                        step=0.1,
                        label="Temperature",
                        info="Higher = more varied"
                    )
                    
                    top_k = gr.Slider(
                        minimum=1, 
                        maximum=100, 
                        value=50, 
                        step=5,
                        label="Top-K"
                    )
                    
                    top_p = gr.Slider(
                        minimum=0.1, 
                        maximum=1.0, 
                        value=0.9, 
                        step=0.05,
                        label="Top-P"
                    )
                    
                    max_tokens = gr.Slider(
                        minimum=256, 
                        maximum=4096, 
                        value=2048, 
                        step=256,
                        label="Max Length"
                    )
        
        gr.Markdown("### 🔊 Generated Audio")
        
        audio_output = gr.Audio(
            label="Generated Speech",
            type="numpy",
            interactive=False,
            format="wav"
        )
            
        status_output = gr.Textbox(
            label="Status",
            interactive=False,
            show_label=False,
            container=False
        )
        
        with gr.Accordion("Try These Examples", open=True):
            def load_example(text, speaker):
                return text, speaker, False, 0.8, 50, 0.9, 2048
            
            gr.Markdown("**Click any example below:**")
            
            # Use safe examples with fallbacks for missing speakers
            safe_examples = get_safe_examples()
            
            for i, (text, speaker) in enumerate(safe_examples):
                btn = gr.Button(f"{text[:30]}{'...' if len(text) > 30 else ''}", size="sm")
                btn.click(
                    fn=lambda t=text, s=speaker: load_example(t, s),
                    outputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens]
                )
        
        with gr.Accordion("About", open=False):
            gr.Markdown(f"""
            ## About MALIBA-AI Bambara TTS
            
            **⚠️ This is an experimental Bambara TTS model.**
            - **Languages**: Bambara (bm)  
            - **Speakers**: 10 different voice options
            - **Sample Rate**: 16kHz
            
            ### 🎭 Available Speakers:
            {" ".join(SPEAKER_NAMES)}
            
            **License**: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)
            
            ---
            
            **MALIBA-AI Mission**: Ensuring no Malian is left behind by technological advances 🇲🇱
            """)
        
        def toggle_advanced(use_adv):
            return gr.Group(visible=use_adv)
        
        use_advanced.change(
            fn=toggle_advanced,
            inputs=[use_advanced],
            outputs=[advanced_group]
        )
        
        generate_btn.click(
            fn=generate_speech,
            inputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens],
            outputs=[audio_output, status_output],
            show_progress=True
        )
        
        text_input.submit(
            fn=generate_speech,
            inputs=[text_input, speaker_dropdown, use_advanced, temperature, top_k, top_p, max_tokens],
            outputs=[audio_output, status_output],
            show_progress=True
        )
    
    return demo

def main():
    """Main function to launch the Gradio interface"""
    logger.info("Starting Bambara TTS Gradio interface.")

    interface = build_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )
    
    logger.info("Gradio interface launched successfully.")

if __name__ == "__main__":
    main()