MalianTTS / app.py
sudoping01's picture
Update app.py
fb7a6bf verified
import gradio as gr
from transformers import VitsModel, AutoTokenizer
import torch
import logging
import spaces
from typing import Tuple, Optional
import numpy as np
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
if torch.cuda.is_available():
device = "cuda"
logger.info("Using CUDA for inference.")
elif torch.backends.mps.is_available():
device = "mps"
logger.info("Using MPS for inference.")
else:
device = "cpu"
logger.info("Using CPU for inference.")
languages = ["bambara", "boomu", "dogon", "pular", "songhoy", "tamasheq"]
examples = {
"bambara": "An filɛ ni ye yɔrɔ minna ni an ye an sigi ka a layɛ yala an bɛ ka baara min kɛ ɛsike a kɛlen don ka Ɲɛ wa ?",
"boomu": "Vunurobe wozomɛ pɛɛ, Poli we zo woro han Deeɓenu wara li Deeɓenu faralo zuun. Lo we baba a lo wara yi see ɓa Zuwifera ma ɓa Gɛrɛkela wa.",
"dogon": "Pɔɔlɔ, kubɔ lugo joo le, bana dɛin dɛin le, inɛw Ama titiyaanw le digɛu, Ama, emɛ babe bɛrɛ sɔɔ sɔi.",
"pular": "Miɗo ndaarde saabe Laamɗo e saabe Iisaa Almasiihu caroyoowo wuurɓe e maayɓe oo, miɗo ndaardire saabe gartol makko ka num e Laamu makko",
"songhoy": "Haya ka se beenediyo kokoyteraydi go hima nda huukoy foo ka fatta ja subaahi ka taasi goykoyyo ngu rezẽ faridi se",
"tamasheq": "Toḍă tăfukt ɣas, issăɣră-dd măssi-s n-ašĕkrĕš ănaẓraf-net, inn'-as: 'Ǝɣĕr-dd inaxdimăn, tĕẓlĕd-asăn, sănt s-wi dd-ĕšrăynen har tĕkkĕd wi dd-ăzzarnen."
}
class MalianTTS:
def __init__(self, model_name: str = "MALIBA-AI/malian-tts"):
self.model_name = model_name
self.models = {}
self.tokenizers = {}
self._load_models()
def _load_models(self):
"""Load all language models and tokenizers"""
try:
for lang in languages:
logger.info(f"Loading model and tokenizer for {lang}...")
self.models[lang] = VitsModel.from_pretrained(
self.model_name,
subfolder=f"models/{lang}"
).to(device)
self.tokenizers[lang] = AutoTokenizer.from_pretrained(
self.model_name,
subfolder=f"models/{lang}"
)
logger.info(f"Successfully loaded {lang}")
except Exception as e:
logger.error(f"Failed to load models: {str(e)}")
raise Exception(f"Model loading failed: {str(e)}")
def synthesize(self, language: str, text: str) -> Tuple[Optional[Tuple[int, np.ndarray]], Optional[str]]:
"""Generate audio from text for the specified language"""
if not text.strip():
return None, "Please enter some text to synthesize."
try:
model = self.models[language]
tokenizer = self.tokenizers[language]
inputs = tokenizer(text, return_tensors="pt").to(device)
with torch.no_grad():
output = model(**inputs).waveform
waveform = output.squeeze().cpu().numpy()
sample_rate = model.config.sampling_rate
return (sample_rate, waveform), None
except Exception as e:
logger.error(f"Error during inference for {language}: {str(e)}")
return None, f"Error generating audio: {str(e)}"
# Initialize the TTS system
tts_system = MalianTTS()
@spaces.GPU()
def generate_audio(language: str, text: str) -> Tuple[Optional[Tuple[int, np.ndarray]], str]:
"""
Generate audio from text using the specified language model.
"""
if not text.strip():
return None, "Please enter some text to synthesize."
try:
audio_output, error_msg = tts_system.synthesize(language, text)
if error_msg:
logger.error(f"TTS generation failed: {error_msg}")
return None, error_msg
logger.info(f"Successfully generated audio for {language}")
return audio_output, "Audio generated successfully!"
except Exception as e:
logger.error(f"Audio generation failed: {e}")
return None, f"Error: {str(e)}"
def load_example(language: str) -> str:
"""Load example text for the selected language"""
return examples.get(language, "No example available")
def build_interface():
"""
Builds the Gradio interface for Malian TTS.
"""
with gr.Blocks(title="MalianVoices") as demo:
gr.Markdown(
"""
# MalianVoices: 🇲🇱 Text-to-Speech in Six Malian Languages
Lightweight TTS for six Malian languages: **Bambara, Boomu, Dogon, Pular, Songhoy, Tamasheq**.
- ✅ Real-time TTS with fast response
## How to Use
1. Pick a language from the dropdown
2. Enter your text or load an example
3. Click **"Generate Audio"** to listen
"""
)
with gr.Row():
language = gr.Dropdown(
choices=languages,
label="Language",
value="bambara"
)
with gr.Column():
text = gr.Textbox(
label="Input Text",
lines=5,
placeholder="Type your text here..."
)
with gr.Row():
example_btn = gr.Button("Load Example")
generate_btn = gr.Button("Generate Audio", variant="primary")
audio_output = gr.Audio(label="Generated Audio", type="numpy")
status_msg = gr.Textbox(label="Status", interactive=False)
# Footer
gr.Markdown(
"""
By [sudoping01](https://huggingface.co/sudoping01), from [sudoping01/malian-tts](https://huggingface.co/sudoping01/malian-tts).
Fine-tuned on Meta's MMS, CC BY-NC 4.0, non-commercial.
"""
)
# Connect buttons to functions
generate_btn.click(
fn=generate_audio,
inputs=[language, text],
outputs=[audio_output, status_msg]
)
example_btn.click(
fn=load_example,
inputs=language,
outputs=text
)
return demo
if __name__ == "__main__":
logger.info("Starting the Gradio interface for MalianVoices TTS.")
interface = build_interface()
interface.launch()
logger.info("Gradio interface running.")