File size: 61,285 Bytes
dce5a82 9ba8fab 3769468 9ba8fab 3769468 dce5a82 da12542 dce5a82 da12542 dbe4d6a da12542 dbe4d6a da12542 dce5a82 f23d956 dbe4d6a f23d956 dbe4d6a f23d956 9ba8fab dce5a82 9ba8fab 14aa913 dce5a82 dbe4d6a dce5a82 dbe4d6a ddc83ff 5f3b2ed dce5a82 dbe4d6a 3769468 1c9f0b6 3769468 d415750 3769468 f81f1e2 3769468 d4aa692 f81f1e2 d415750 3769468 d415750 3769468 d415750 3769468 d415750 d4aa692 f81f1e2 3769468 ddc83ff 2e23fb2 f81f1e2 d4aa692 3769468 d415750 f81f1e2 3769468 dbe4d6a e8b48ca d415750 d4aa692 d415750 d4aa692 f81f1e2 d4aa692 f81f1e2 d4aa692 9ba8fab 32130a5 dce5a82 1c9f0b6 dbe4d6a dce5a82 5815dce 1c9f0b6 dce5a82 1c9f0b6 dce5a82 1c9f0b6 5815dce dce5a82 1c9f0b6 dce5a82 1c9f0b6 dce5a82 32130a5 dce5a82 5815dce 5f3b2ed f23d956 9ba8fab f23d956 e8b48ca f23d956 5815dce f23d956 5815dce f23d956 5815dce 1c9f0b6 5815dce dbe4d6a dce5a82 2e23fb2 dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a f23d956 9ba8fab d415750 3769468 dce5a82 d415750 29c8f24 dce5a82 d415750 9ba8fab d415750 dce5a82 ddc83ff 3769468 d415750 3769468 dce5a82 d415750 3769468 dce5a82 f81f1e2 d415750 f81f1e2 d415750 d4aa692 dce5a82 d415750 dce5a82 9ba8fab dce5a82 9ba8fab 5f3b2ed dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a 9ba8fab dbe4d6a 5f3b2ed 1c9f0b6 dce5a82 5815dce dce5a82 3769468 9ba8fab dce5a82 c726970 dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 d415750 dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 e445644 dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a 33f8987 dce5a82 dbe4d6a 05a3a7b dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 dbe4d6a dce5a82 9ba8fab 3769468 1c9f0b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 |
# import gradio as gr
# import pandas as pd
# from datasets import load_dataset
# from jiwer import wer, cer
# import os
# from datetime import datetime
# import re
# from huggingface_hub import login
# # Login to Hugging Face Hub (if token is available)
# token = os.environ.get("HG_TOKEN")
# if token:
# login(token)
# try:
# dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default")["eval"]
# references = {row["id"]: row["text"] for row in dataset}
# print(f"Loaded {len(references)} reference transcriptions")
# except Exception as e:
# print(f"Error loading dataset: {str(e)}")
# references = {}
# leaderboard_file = "leaderboard.csv"
# if not os.path.exists(leaderboard_file):
# sample_data = [
# ["test_1", 0.2264, 0.1094, 0.1922, "2025-03-15 10:30:45"],
# ["test_2", 0.3264, 0.1094, 0.1922, "2025-03-15 10:30:45"],
# ]
# pd.DataFrame(sample_data,
# columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]).to_csv(leaderboard_file, index=False)
# print(f"Created new leaderboard file with sample data")
# else:
# leaderboard_df = pd.read_csv(leaderboard_file)
# if "Combined_Score" not in leaderboard_df.columns:
# leaderboard_df["Combined_Score"] = leaderboard_df["WER"] * 0.7 + leaderboard_df["CER"] * 0.3
# leaderboard_df.to_csv(leaderboard_file, index=False)
# print(f"Added Combined_Score column to existing leaderboard")
# print(f"Loaded leaderboard with {len(leaderboard_df)} entries")
# def normalize_text(text):
# """Normalize text for WER/CER calculation"""
# if not isinstance(text, str):
# text = str(text)
# text = text.lower()
# text = re.sub(r'[^\w\s]', '', text)
# text = re.sub(r'\s+', ' ', text).strip()
# return text
# def calculate_metrics(predictions_df):
# """Calculate WER and CER for predictions."""
# results = []
# total_ref_words = 0
# total_ref_chars = 0
# for _, row in predictions_df.iterrows():
# id_val = row["id"]
# if id_val not in references:
# continue
# reference = normalize_text(references[id_val])
# hypothesis = normalize_text(row["text"])
# if not reference or not hypothesis:
# continue
# reference_words = reference.split()
# hypothesis_words = hypothesis.split()
# reference_chars = list(reference)
# try:
# sample_wer = wer(reference, hypothesis)
# sample_cer = cer(reference, hypothesis)
# sample_wer = min(sample_wer, 2.0)
# sample_cer = min(sample_cer, 2.0)
# total_ref_words += len(reference_words)
# total_ref_chars += len(reference_chars)
# results.append({
# "id": id_val,
# "reference": reference,
# "hypothesis": hypothesis,
# "ref_word_count": len(reference_words),
# "ref_char_count": len(reference_chars),
# "wer": sample_wer,
# "cer": sample_cer
# })
# except Exception as e:
# print(f"Error processing sample {id_val}: {str(e)}")
# pass
# if not results:
# raise ValueError("No valid samples for WER/CER calculation")
# avg_wer = sum(item["wer"] for item in results) / len(results)
# avg_cer = sum(item["cer"] for item in results) / len(results)
# weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words
# weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars
# return avg_wer, avg_cer, weighted_wer, weighted_cer, results
# def format_as_percentage(value):
# """Convert decimal to percentage with 2 decimal places"""
# return f"{value * 100:.2f}%"
# def prepare_leaderboard_for_display(df, sort_by="Combined_Score"):
# """Format leaderboard for display with ranking and percentages"""
# if df is None or len(df) == 0:
# return pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"])
# display_df = df.copy()
# display_df = display_df.sort_values(sort_by)
# display_df.insert(0, "Rank", range(1, len(display_df) + 1))
# for col in ["WER", "CER", "Combined_Score"]:
# if col in display_df.columns:
# display_df[f"{col} (%)"] = display_df[col].apply(lambda x: f"{x * 100:.2f}")
# return display_df
# def update_ranking(method):
# """Update leaderboard ranking based on selected method"""
# try:
# current_lb = pd.read_csv(leaderboard_file)
# if "Combined_Score" not in current_lb.columns:
# current_lb["Combined_Score"] = current_lb["WER"] * 0.7 + current_lb["CER"] * 0.3
# sort_column = "Combined_Score"
# if method == "WER Only":
# sort_column = "WER"
# elif method == "CER Only":
# sort_column = "CER"
# return prepare_leaderboard_for_display(current_lb, sort_column)
# except Exception as e:
# print(f"Error updating ranking: {str(e)}")
# return pd.DataFrame(columns=["Rank", "Model_Name", "WER (%)", "CER (%)", "Combined_Score (%)", "timestamp"])
# def process_submission(model_name, csv_file):
# """Process a new model submission"""
# if not model_name or not model_name.strip():
# return "Error: Please provide a model name.", None
# if not csv_file:
# return "Error: Please upload a CSV file.", None
# try:
# df = pd.read_csv(csv_file)
# if len(df) == 0:
# return "Error: Uploaded CSV is empty.", None
# if set(df.columns) != {"id", "text"}:
# return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None
# if df["id"].duplicated().any():
# dup_ids = df[df["id"].duplicated()]["id"].unique()
# return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
# missing_ids = set(references.keys()) - set(df["id"])
# extra_ids = set(df["id"]) - set(references.keys())
# if missing_ids:
# return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None
# if extra_ids:
# return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
# try:
# avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
# # Check for suspiciously low values
# if avg_wer < 0.001:
# return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
# except Exception as e:
# return f"Error calculating metrics: {str(e)}", None
# leaderboard = pd.read_csv(leaderboard_file)
# timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# combined_score = avg_wer * 0.7 + avg_cer * 0.3
# if model_name in leaderboard["Model_Name"].values:
# idx = leaderboard[leaderboard["Model_Name"] == model_name].index
# leaderboard.loc[idx, "WER"] = avg_wer
# leaderboard.loc[idx, "CER"] = avg_cer
# leaderboard.loc[idx, "Combined_Score"] = combined_score
# leaderboard.loc[idx, "timestamp"] = timestamp
# updated_leaderboard = leaderboard
# else:
# new_entry = pd.DataFrame(
# [[model_name, avg_wer, avg_cer, combined_score, timestamp]],
# columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"]
# )
# updated_leaderboard = pd.concat([leaderboard, new_entry])
# updated_leaderboard = updated_leaderboard.sort_values("Combined_Score")
# updated_leaderboard.to_csv(leaderboard_file, index=False)
# display_leaderboard = prepare_leaderboard_for_display(updated_leaderboard)
# return f"Submission processed successfully! WER: {format_as_percentage(avg_wer)}, CER: {format_as_percentage(avg_cer)}, Combined Score: {format_as_percentage(combined_score)}", display_leaderboard
# except Exception as e:
# return f"Error processing submission: {str(e)}", None
# def get_current_leaderboard():
# """Get the current leaderboard data for display"""
# try:
# if os.path.exists(leaderboard_file):
# current_leaderboard = pd.read_csv(leaderboard_file)
# if "Combined_Score" not in current_leaderboard.columns:
# current_leaderboard["Combined_Score"] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
# current_leaderboard.to_csv(leaderboard_file, index=False)
# return current_leaderboard
# else:
# return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
# except Exception as e:
# print(f"Error getting leaderboard: {str(e)}")
# return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp"])
# def create_leaderboard_table():
# """Create and format the leaderboard table for display"""
# leaderboard_data = get_current_leaderboard()
# return prepare_leaderboard_for_display(leaderboard_data)
# with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
# gr.Markdown(
# """
# # π²π± Bambara ASR Leaderboard
# This leaderboard tracks and evaluates speech recognition models for the Bambara language.
# Models are ranked based on Word Error Rate (WER), Character Error Rate (CER), and a combined score.
# ## Current Models Performance
# """
# )
# current_data = get_current_leaderboard()
# if len(current_data) > 0:
# best_model = current_data.sort_values("Combined_Score").iloc[0]
# gr.Markdown(f"""
# ### π Current Best Model: **{best_model['Model_Name']}**
# * WER: **{best_model['WER']*100:.2f}%**
# * CER: **{best_model['CER']*100:.2f}%**
# * Combined Score: **{best_model['Combined_Score']*100:.2f}%**
# """)
# with gr.Tabs() as tabs:
# with gr.TabItem("π
Model Rankings"):
# initial_leaderboard = create_leaderboard_table()
# ranking_method = gr.Radio(
# ["Combined Score (WER 70%, CER 30%)", "WER Only", "CER Only"],
# label="Ranking Method",
# value="Combined Score (WER 70%, CER 30%)"
# )
# leaderboard_view = gr.DataFrame(
# value=initial_leaderboard,
# interactive=False,
# label="Models are ranked by selected metric - lower is better"
# )
# ranking_method.change(
# fn=update_ranking,
# inputs=[ranking_method],
# outputs=[leaderboard_view]
# )
# with gr.Accordion("Metrics Explanation", open=False):
# gr.Markdown(
# """
# ## Understanding ASR Metrics
# ### Word Error Rate (WER)
# WER measures how accurately the ASR system recognizes whole words:
# * Lower values indicate better performance
# * Calculated as: (Substitutions + Insertions + Deletions) / Total Words
# * A WER of 0% means perfect transcription
# * A WER of 20% means approximately 1 in 5 words contains an error
# ### Character Error Rate (CER)
# CER measures accuracy at the character level:
# * More fine-grained than WER
# * Better at capturing partial word matches
# * Particularly useful for agglutinative languages like Bambara
# ### Combined Score
# * Weighted average: 70% WER + 30% CER
# * Provides a balanced evaluation of model performance
# * Used as the primary ranking metric
# """
# )
# with gr.TabItem("π Submit New Results"):
# gr.Markdown(
# """
# ### Submit a new model for evaluation
# Upload a CSV file with the following format:
# * Must contain exactly two columns: 'id' and 'text'
# * The 'id' column should match the reference dataset IDs
# * The 'text' column should contain your model's transcriptions
# """
# )
# with gr.Row():
# model_name_input = gr.Textbox(
# label="Model Name",
# placeholder="e.g., MALIBA-AI/bambara-asr"
# )
# gr.Markdown("*Use a descriptive name to identify your model*")
# with gr.Row():
# csv_upload = gr.File(
# label="Upload CSV File",
# file_types=[".csv"]
# )
# gr.Markdown("*CSV with columns: id, text*")
# submit_btn = gr.Button("Submit", variant="primary")
# output_msg = gr.Textbox(label="Status", interactive=False)
# leaderboard_display = gr.DataFrame(
# label="Updated Leaderboard",
# value=initial_leaderboard,
# interactive=False
# )
# submit_btn.click(
# fn=process_submission,
# inputs=[model_name_input, csv_upload],
# outputs=[output_msg, leaderboard_display]
# )
# with gr.TabItem("π Benchmark Dataset"):
# gr.Markdown(
# """
# ## About the Benchmark Dataset
# This leaderboard uses the **[sudoping01/bambara-speech-recognition-benchmark](https://huggingface.co/datasets/MALIBA-AI/bambara-speech-recognition-leaderboard)** dataset:
# * Contains diverse Bambara speech samples
# * Includes various speakers, accents, and dialects
# * Covers different speech styles and recording conditions
# * Transcribed and validated
# ### How to Generate Predictions
# To submit results to this leaderboard:
# 1. Download the audio files from the benchmark dataset
# 2. Run your ASR model on the audio files
# 3. Generate a CSV file with 'id' and 'text' columns
# 4. Submit your results using the form in the "Submit New Results" tab
# ### Evaluation Guidelines
# * Text is normalized (lowercase, punctuation removed) before metrics calculation
# * Extreme outliers are capped to prevent skewing results
# * All submissions are validated for format and completeness
# NB: This work is a collaboration between MALIBA-AI, RobotsMali AI4D-LAB and Djelia
# """
# )
# gr.Markdown(
# """
# ---
# ### About MALIBA-AI
# **MALIBA-AI: Empowering Mali's Future Through Community-Driven AI Innovation**
# *"No Malian Language Left Behind"*
# This leaderboard is maintained by the MALIBA-AI initiative to track progress in Bambara speech recognition technology.
# For more information, visit [MALIBA-AI on Hugging Face](https://huggingface.co/MALIBA-AI).
# """
# )
# if __name__ == "__main__":
# demo.launch()
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
import re
import plotly.express as px
import plotly.graph_objects as go
from huggingface_hub import login
import numpy as np
# Custom CSS inspired by Sahara leaderboard
custom_head_html = """
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&family=Rubik:wght@400;600&display=swap" rel="stylesheet">
"""
# Header with MALIBA-AI branding
new_header_html = """
<center>
<br><br>
<div style="display: flex; align-items: center; justify-content: center; gap: 20px; margin-bottom: 20px;">
<div style="font-size: 4em;">π²π±</div>
<div>
<h1 style="margin: 0; font-family: 'Rubik', sans-serif; color: #2f3b7d; font-size: 2.5em; font-weight: 700;">
Bambara ASR Leaderboard
</h1>
<p style="margin: 5px 0 0 0; font-size: 1.2em; color: #7d3561; font-weight: 600;">
Powered by MALIBA-AI β’ "No Malian Language Left Behind"
</p>
</div>
<div style="font-size: 4em;">ποΈ</div>
</div>
</center>
"""
# Advanced CSS styling inspired by Sahara
sahara_style_css = """
/* Global Styles */
div[class*="gradio-container"] {
background: #FFFBF5 !important;
color: #000 !important;
font-family: 'Inter', sans-serif !important;
}
div.svelte-1nguped {
background: white !important;
}
.fillable.svelte-15jxnnn.svelte-15jxnnn:not(.fill_width) {
max-width: 1580px !important;
}
/* Navigation Buttons */
.nav-button {
background-color: #117b75 !important;
color: #fff !important;
font-weight: bold !important;
border-radius: 8px !important;
border: none !important;
box-shadow: 0 2px 4px rgba(0,0,0,0.1) !important;
transition: all 0.3s ease !important;
}
.nav-button:hover {
background-color: #0f6b66 !important;
color: #e8850e !important;
transform: translateY(-1px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
}
/* Content Cards */
.content-section {
padding: 40px 0;
}
.content-card {
background-color: #fff !important;
border-radius: 16px !important;
box-shadow: 0 10px 25px -5px rgba(0,0,0,0.1), 0 8px 10px -6px rgba(0,0,0,0.1) !important;
padding: 40px !important;
margin-bottom: 30px !important;
border: 1px solid rgba(0,0,0,0.05) !important;
}
/* Typography */
.content-card h2 {
font-family: "Rubik", sans-serif !important;
font-size: 32px !important;
font-weight: 700 !important;
line-height: 1.25 !important;
letter-spacing: -1px !important;
color: #2f3b7d !important;
margin-bottom: 20px !important;
text-align: center !important;
}
.content-card h3 {
font-size: 22px !important;
color: #2f3b7d !important;
font-weight: 600 !important;
margin-bottom: 15px !important;
}
.content-card h4 {
font-family: "Rubik", sans-serif !important;
color: #7d3561 !important;
font-weight: 600 !important;
margin-bottom: 10px !important;
}
.title {
color: #7d3561 !important;
font-weight: 600 !important;
}
/* Tab Styling */
.tab-wrapper.svelte-1tcem6n.svelte-1tcem6n {
display: flex;
align-items: center;
justify-content: space-between;
position: relative;
height: auto !important;
padding-bottom: 0 !important;
}
.selected.svelte-1tcem6n.svelte-1tcem6n {
background-color: #7d3561 !important;
color: #fff !important;
border-radius: 8px 8px 0 0 !important;
}
button.svelte-1tcem6n.svelte-1tcem6n {
color: #7d3561 !important;
font-weight: 600 !important;
font-size: 16px !important;
padding: 12px 20px !important;
background-color: #fff !important;
border-radius: 8px 8px 0 0 !important;
border: 2px solid #e9ecef !important;
border-bottom: none !important;
transition: all 0.3s ease !important;
}
button.svelte-1tcem6n.svelte-1tcem6n:hover {
background-color: #f8f9fa !important;
border-color: #7d3561 !important;
}
.tab-container.svelte-1tcem6n.svelte-1tcem6n:after {
content: "";
position: absolute;
bottom: 0;
left: 0;
right: 0;
height: 3px;
background: linear-gradient(90deg, #7d3561 0%, #2f3b7d 100%) !important;
}
/* Table Styling */
div[class*="gradio-container"] .prose table {
color: #000 !important;
border: 2px solid #dca02a !important;
border-radius: 12px !important;
margin-bottom: 20px !important;
margin-left: auto !important;
margin-right: auto !important;
width: 100% !important;
border-collapse: separate !important;
border-spacing: 0 !important;
overflow: hidden !important;
box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important;
}
div[class*="gradio-container"] .prose thead tr {
background: linear-gradient(90deg, #7d3561 0%, #2f3b7d 100%) !important;
}
div[class*="gradio-container"] .prose th {
color: #fff !important;
font-weight: 700 !important;
font-size: 14px !important;
padding: 15px 10px !important;
text-align: center !important;
border: none !important;
}
div[class*="gradio-container"] .prose td {
font-size: 14px !important;
padding: 12px 10px !important;
border: none !important;
text-align: center !important;
color: #000 !important;
border-bottom: 1px solid #f8f9fa !important;
}
div[class*="gradio-container"] .prose tbody tr:nth-child(even) {
background-color: #f8f9fa !important;
}
div[class*="gradio-container"] .prose tbody tr:hover {
background-color: #e3f2fd !important;
transition: background-color 0.2s ease !important;
}
/* First column (model names) styling */
div[class*="gradio-container"] .prose th:first-child,
div[class*="gradio-container"] .prose td:first-child {
text-align: left !important;
min-width: 250px !important;
font-weight: 600 !important;
}
/* Performance badges */
.performance-badge {
display: inline-block;
padding: 4px 8px;
border-radius: 12px;
font-size: 12px;
font-weight: 600;
margin-left: 8px;
}
.badge-excellent {
background: #d4edda;
color: #155724;
}
.badge-good {
background: #fff3cd;
color: #856404;
}
.badge-fair {
background: #f8d7da;
color: #721c24;
}
/* Stats cards */
.stats-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 20px;
margin: 20px 0;
}
.stat-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 20px;
border-radius: 12px;
text-align: center;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.stat-number {
font-size: 2em;
font-weight: 700;
margin-bottom: 5px;
}
.stat-label {
font-size: 0.9em;
opacity: 0.9;
}
/* Form styling */
.form-section {
background: #f8f9fa;
border-radius: 12px;
padding: 25px;
margin: 20px 0;
border-left: 4px solid #7d3561;
}
/* Citation block */
.citation-block {
background-color: #FDF6E3 !important;
border-radius: 12px !important;
padding: 25px !important;
border-left: 4px solid #D97706 !important;
margin: 20px 0 !important;
}
/* Dropdown styling */
.gradio-dropdown {
border-radius: 8px !important;
border: 2px solid #e9ecef !important;
}
.gradio-dropdown:focus {
border-color: #7d3561 !important;
box-shadow: 0 0 0 3px rgba(125, 53, 97, 0.1) !important;
}
/* Button styling */
.gradio-button {
border-radius: 8px !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
.gradio-button.primary {
background: linear-gradient(135deg, #7d3561 0%, #2f3b7d 100%) !important;
border: none !important;
color: white !important;
}
.gradio-button.primary:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 12px rgba(125, 53, 97, 0.3) !important;
}
/* Responsive design */
@media (max-width: 768px) {
.content-card {
padding: 20px !important;
margin-bottom: 20px !important;
}
.content-card h2 {
font-size: 24px !important;
}
.stats-grid {
grid-template-columns: 1fr !important;
}
}
"""
# Login to Hugging Face Hub (if token is available)
token = os.environ.get("HG_TOKEN")
if token:
login(token)
# Load dataset
try:
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark", name="default")["eval"]
references = {row["id"]: row["text"] for row in dataset}
print(f"Loaded {len(references)} reference transcriptions")
except Exception as e:
print(f"Error loading dataset: {str(e)}")
references = {}
# Initialize leaderboard
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
sample_data = [
["MALIBA-AI/bambara-whisper-small", 0.2264, 0.1094, 0.1922, "2025-03-15 10:30:45", "Whisper-based", "Mali", "ASR"],
["OpenAI/whisper-base", 0.3264, 0.1094, 0.1922, "2025-03-15 10:30:45", "Foundation", "USA", "ASR"],
]
pd.DataFrame(sample_data,
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp", "Type", "Origin", "Task"]).to_csv(leaderboard_file, index=False)
print(f"Created new leaderboard file with sample data")
else:
leaderboard_df = pd.read_csv(leaderboard_file)
# Add new columns if they don't exist
required_columns = ["Combined_Score", "Type", "Origin", "Task"]
for col in required_columns:
if col not in leaderboard_df.columns:
if col == "Combined_Score":
leaderboard_df[col] = leaderboard_df["WER"] * 0.7 + leaderboard_df["CER"] * 0.3
else:
default_val = "Unknown" if col != "Task" else "ASR"
leaderboard_df[col] = default_val
leaderboard_df.to_csv(leaderboard_file, index=False)
print(f"Loaded leaderboard with {len(leaderboard_df)} entries")
def normalize_text(text):
"""Normalize text for WER/CER calculation"""
if not isinstance(text, str):
text = str(text)
text = text.lower()
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def calculate_metrics(predictions_df):
"""Calculate WER and CER for predictions."""
results = []
total_ref_words = 0
total_ref_chars = 0
for _, row in predictions_df.iterrows():
id_val = row["id"]
if id_val not in references:
continue
reference = normalize_text(references[id_val])
hypothesis = normalize_text(row["text"])
if not reference or not hypothesis:
continue
reference_words = reference.split()
hypothesis_words = hypothesis.split()
reference_chars = list(reference)
try:
sample_wer = wer(reference, hypothesis)
sample_cer = cer(reference, hypothesis)
sample_wer = min(sample_wer, 2.0)
sample_cer = min(sample_cer, 2.0)
total_ref_words += len(reference_words)
total_ref_chars += len(reference_chars)
results.append({
"id": id_val,
"reference": reference,
"hypothesis": hypothesis,
"ref_word_count": len(reference_words),
"ref_char_count": len(reference_chars),
"wer": sample_wer,
"cer": sample_cer
})
except Exception as e:
print(f"Error processing sample {id_val}: {str(e)}")
pass
if not results:
raise ValueError("No valid samples for WER/CER calculation")
avg_wer = sum(item["wer"] for item in results) / len(results)
avg_cer = sum(item["cer"] for item in results) / len(results)
weighted_wer = sum(item["wer"] * item["ref_word_count"] for item in results) / total_ref_words
weighted_cer = sum(item["cer"] * item["ref_char_count"] for item in results) / total_ref_chars
return avg_wer, avg_cer, weighted_wer, weighted_cer, results
def format_as_percentage(value):
"""Convert decimal to percentage with 2 decimal places"""
return f"{value * 100:.2f}%"
def get_performance_badge(score):
"""Get performance badge based on score"""
if score < 0.15:
return "π Excellent"
elif score < 0.30:
return "π₯ Good"
else:
return "π Fair"
def add_medals_to_models(df, score_col="Combined_Score"):
"""Add medals to top-performing models"""
if df.empty or score_col not in df.columns:
return df
df_copy = df.copy()
# Convert score to float for sorting
df_copy[f"{score_col}_float"] = pd.to_numeric(df_copy[score_col], errors='coerce')
# Sort by score (ascending - lower is better for error rates)
df_copy = df_copy.sort_values(by=f"{score_col}_float", ascending=True, na_position='last').reset_index(drop=True)
# Get unique scores for ranking
valid_scores = df_copy[f"{score_col}_float"].dropna().unique()
valid_scores.sort()
# Assign medals
medals = ["π", "π₯", "π₯"]
def get_medal(score):
if pd.isna(score):
return ""
rank = np.where(valid_scores == score)[0]
if len(rank) > 0 and rank[0] < len(medals):
return medals[rank[0]] + " "
return ""
df_copy["Medal"] = df_copy[f"{score_col}_float"].apply(get_medal)
df_copy["Model_Name"] = df_copy["Medal"] + df_copy["Model_Name"].astype(str)
# Clean up temporary columns
df_copy = df_copy.drop(columns=[f"{score_col}_float", "Medal"])
return df_copy
def prepare_leaderboard_for_display(df, sort_by="Combined_Score"):
"""Format leaderboard for display with ranking and percentages"""
if df is None or len(df) == 0:
return pd.DataFrame(columns=["Rank", "Model", "WER (%)", "CER (%)", "Combined Score (%)", "Performance", "Type", "Date"])
display_df = df.copy()
# Add medals first
display_df = add_medals_to_models(display_df, sort_by)
# Sort by the specified column
display_df[f"{sort_by}_float"] = pd.to_numeric(display_df[sort_by], errors='coerce')
display_df = display_df.sort_values(f"{sort_by}_float", ascending=True, na_position='last')
# Add rank
display_df.insert(0, "Rank", range(1, len(display_df) + 1))
# Format percentages
for col in ["WER", "CER", "Combined_Score"]:
if col in display_df.columns:
display_df[f"{col} (%)"] = display_df[col].apply(lambda x: f"{x * 100:.2f}" if pd.notna(x) else "---")
# Add performance badges
display_df["Performance"] = display_df["Combined_Score"].apply(lambda x: get_performance_badge(x) if pd.notna(x) else "---")
# Shorten model names for display
display_df["Model"] = display_df["Model_Name"].apply(lambda x: x.split("/")[-1] if "/" in str(x) else str(x))
# Format date
if "timestamp" in display_df.columns:
display_df["Date"] = pd.to_datetime(display_df["timestamp"], errors='coerce').dt.strftime("%Y-%m-%d")
else:
display_df["Date"] = "---"
# Select and reorder columns
display_columns = ["Rank", "Model", "WER (%)", "CER (%)", "Combined Score (%)", "Performance", "Type", "Date"]
available_columns = [col for col in display_columns if col in display_df.columns]
# Clean up temporary columns
temp_cols = [col for col in display_df.columns if col.endswith("_float")]
display_df = display_df.drop(columns=temp_cols, errors='ignore')
return display_df[available_columns]
def create_performance_chart():
"""Create performance visualization chart"""
try:
df = pd.read_csv(leaderboard_file)
if len(df) == 0:
return None
# Sort by Combined_Score
df = df.sort_values("Combined_Score")
fig = go.Figure()
# Add WER bars
fig.add_trace(go.Bar(
name="WER",
x=df["Model_Name"].apply(lambda x: x.split("/")[-1] if "/" in x else x),
y=df["WER"] * 100,
marker_color='#ff7f0e',
hovertemplate='<b>%{x}</b><br>WER: %{y:.2f}%<extra></extra>'
))
# Add CER bars
fig.add_trace(go.Bar(
name="CER",
x=df["Model_Name"].apply(lambda x: x.split("/")[-1] if "/" in x else x),
y=df["CER"] * 100,
marker_color='#2ca02c',
hovertemplate='<b>%{x}</b><br>CER: %{y:.2f}%<extra></extra>'
))
# Add Combined Score line
fig.add_trace(go.Scatter(
name="Combined Score",
x=df["Model_Name"].apply(lambda x: x.split("/")[-1] if "/" in x else x),
y=df["Combined_Score"] * 100,
mode='lines+markers',
line=dict(color='#d62728', width=3),
marker=dict(size=8),
hovertemplate='<b>%{x}</b><br>Combined Score: %{y:.2f}%<extra></extra>'
))
fig.update_layout(
title={
'text': "π Model Performance Comparison",
'x': 0.5,
'font': {'size': 18, 'family': 'Rubik'}
},
xaxis_title="Model",
yaxis_title="Error Rate (%)",
hovermode='x unified',
height=500,
showlegend=True,
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
font=dict(family="Inter", size=12),
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
return fig
except Exception as e:
print(f"Error creating chart: {str(e)}")
return None
def get_leaderboard_stats():
"""Get summary statistics for the leaderboard"""
try:
df = pd.read_csv(leaderboard_file)
if len(df) == 0:
return """
<div class="stats-grid">
<div class="stat-card">
<div class="stat-number">0</div>
<div class="stat-label">Models Submitted</div>
</div>
</div>
"""
best_model = df.loc[df["Combined_Score"].idxmin()]
total_models = len(df)
avg_wer = df["WER"].mean()
avg_cer = df["CER"].mean()
return f"""
<div class="stats-grid">
<div class="stat-card">
<div class="stat-number">{total_models}</div>
<div class="stat-label">Models Evaluated</div>
</div>
<div class="stat-card">
<div class="stat-number">{format_as_percentage(best_model['Combined_Score'])}</div>
<div class="stat-label">Best Combined Score</div>
</div>
<div class="stat-card">
<div class="stat-number">{format_as_percentage(avg_wer)}</div>
<div class="stat-label">Average WER</div>
</div>
<div class="stat-card">
<div class="stat-number">{format_as_percentage(avg_cer)}</div>
<div class="stat-label">Average CER</div>
</div>
</div>
<div style="text-align: center; margin-top: 20px;">
<h4>π Current Champion: {best_model['Model_Name']}</h4>
</div>
"""
except Exception as e:
return f"<p>Error loading stats: {str(e)}</p>"
def update_ranking(method):
"""Update leaderboard ranking based on selected method"""
try:
current_lb = pd.read_csv(leaderboard_file)
if "Combined_Score" not in current_lb.columns:
current_lb["Combined_Score"] = current_lb["WER"] * 0.7 + current_lb["CER"] * 0.3
sort_column = "Combined_Score"
if method == "WER Only":
sort_column = "WER"
elif method == "CER Only":
sort_column = "CER"
return prepare_leaderboard_for_display(current_lb, sort_column)
except Exception as e:
print(f"Error updating ranking: {str(e)}")
return pd.DataFrame(columns=["Rank", "Model", "WER (%)", "CER (%)", "Combined Score (%)", "Performance", "Type", "Date"])
def compare_models(model_1_name, model_2_name):
"""Compare two models performance"""
try:
df = pd.read_csv(leaderboard_file)
if model_1_name == model_2_name:
return pd.DataFrame([{"Info": "Please select two different models to compare."}])
model_1 = df[df["Model_Name"] == model_1_name]
model_2 = df[df["Model_Name"] == model_2_name]
if model_1.empty or model_2.empty:
return pd.DataFrame([{"Info": "One or both models not found in leaderboard."}])
m1 = model_1.iloc[0]
m2 = model_2.iloc[0]
comparison_data = {
"Metric": ["WER", "CER", "Combined Score"],
model_1_name.split("/")[-1]: [
f"{m1['WER']*100:.2f}%",
f"{m1['CER']*100:.2f}%",
f"{m1['Combined_Score']*100:.2f}%"
],
model_2_name.split("/")[-1]: [
f"{m2['WER']*100:.2f}%",
f"{m2['CER']*100:.2f}%",
f"{m2['Combined_Score']*100:.2f}%"
],
"Difference": [
f"{(m1['WER'] - m2['WER'])*100:+.2f}%",
f"{(m1['CER'] - m2['CER'])*100:+.2f}%",
f"{(m1['Combined_Score'] - m2['Combined_Score'])*100:+.2f}%"
]
}
return pd.DataFrame(comparison_data)
except Exception as e:
return pd.DataFrame([{"Error": f"Error comparing models: {str(e)}"}])
def process_submission(model_name, csv_file, model_type, origin_country):
"""Process a new model submission with enhanced metadata"""
if not model_name or not model_name.strip():
return "β **Error:** Please provide a model name.", None, None
if not csv_file:
return "β **Error:** Please upload a CSV file.", None, None
try:
df = pd.read_csv(csv_file)
if len(df) == 0:
return "β **Error:** Uploaded CSV is empty.", None, None
if set(df.columns) != {"id", "text"}:
return f"β **Error:** CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None, None
if df["id"].duplicated().any():
dup_ids = df[df["id"].duplicated()]["id"].unique()
return f"β **Error:** Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None, None
missing_ids = set(references.keys()) - set(df["id"])
extra_ids = set(df["id"]) - set(references.keys())
if missing_ids:
return f"β **Error:** Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None, None
if extra_ids:
return f"β **Error:** Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None, None
try:
avg_wer, avg_cer, weighted_wer, weighted_cer, detailed_results = calculate_metrics(df)
if avg_wer < 0.001:
return "β **Error:** WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None, None
except Exception as e:
return f"β **Error calculating metrics:** {str(e)}", None, None
# Update leaderboard
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
combined_score = avg_wer * 0.7 + avg_cer * 0.3
if model_name in leaderboard["Model_Name"].values:
idx = leaderboard[leaderboard["Model_Name"] == model_name].index
leaderboard.loc[idx, "WER"] = avg_wer
leaderboard.loc[idx, "CER"] = avg_cer
leaderboard.loc[idx, "Combined_Score"] = combined_score
leaderboard.loc[idx, "timestamp"] = timestamp
leaderboard.loc[idx, "Type"] = model_type
leaderboard.loc[idx, "Origin"] = origin_country
updated_leaderboard = leaderboard
else:
new_entry = pd.DataFrame(
[[model_name, avg_wer, avg_cer, combined_score, timestamp, model_type, origin_country, "ASR"]],
columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp", "Type", "Origin", "Task"]
)
updated_leaderboard = pd.concat([leaderboard, new_entry])
updated_leaderboard = updated_leaderboard.sort_values("Combined_Score")
updated_leaderboard.to_csv(leaderboard_file, index=False)
display_leaderboard = prepare_leaderboard_for_display(updated_leaderboard)
chart = create_performance_chart()
badge = get_performance_badge(combined_score)
success_msg = f"""
β
**Submission processed successfully!**
**{model_name}** ({model_type} from {origin_country})
- **WER:** {format_as_percentage(avg_wer)}
- **CER:** {format_as_percentage(avg_cer)}
- **Combined Score:** {format_as_percentage(combined_score)}
- **Performance:** {badge}
"""
return success_msg, display_leaderboard, chart
except Exception as e:
return f"β **Error processing submission:** {str(e)}", None, None
def get_current_leaderboard():
"""Get the current leaderboard data for display"""
try:
if os.path.exists(leaderboard_file):
current_leaderboard = pd.read_csv(leaderboard_file)
# Ensure all required columns exist
required_columns = ["Combined_Score", "Type", "Origin", "Task"]
for col in required_columns:
if col not in current_leaderboard.columns:
if col == "Combined_Score":
current_leaderboard[col] = current_leaderboard["WER"] * 0.7 + current_leaderboard["CER"] * 0.3
else:
current_leaderboard[col] = "Unknown" if col != "Task" else "ASR"
current_leaderboard.to_csv(leaderboard_file, index=False)
return current_leaderboard
else:
return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp", "Type", "Origin", "Task"])
except Exception as e:
print(f"Error getting leaderboard: {str(e)}")
return pd.DataFrame(columns=["Model_Name", "WER", "CER", "Combined_Score", "timestamp", "Type", "Origin", "Task"])
def create_leaderboard_table():
"""Create and format the leaderboard table for display"""
leaderboard_data = get_current_leaderboard()
return prepare_leaderboard_for_display(leaderboard_data)
def df_to_html(df):
"""Convert DataFrame to HTML with custom styling"""
if df.empty:
return "<p style='text-align: center; color: #666;'>No data available</p>"
# Convert DataFrame to HTML
html = df.to_html(index=False, escape=False, classes="leaderboard-table")
# Add custom styling
html = html.replace('<table class="leaderboard-table"',
'<table class="leaderboard-table" style="width: 100%; margin: 0 auto;"')
return html
# Main Gradio Interface
with gr.Blocks(
title="π²π± Bambara ASR Leaderboard | MALIBA-AI",
css=sahara_style_css,
head=custom_head_html,
theme=gr.themes.Soft()
) as demo:
# Header Section
gr.HTML(new_header_html)
# Navigation Buttons
with gr.Row():
gr.Button("π MALIBA-AI Website", link="https://maliba-ai.org/", elem_classes=['nav-button'])
gr.Button("π HF Dataset Repo", link="https://huggingface.co/datasets/sudoping01/bambara-speech-recognition-benchmark", elem_classes=['nav-button'])
gr.Button("π€ MALIBA-AI Hub", link="https://huggingface.co/MALIBA-AI", elem_classes=['nav-button'])
gr.Button("π Documentation", link="https://huggingface.co/spaces/MALIBA-AI/bambara-asr-leaderboard", elem_classes=['nav-button'])
with gr.Group(elem_classes="content-card"):
# Stats display
stats_html = gr.HTML(get_leaderboard_stats())
with gr.Tabs() as tabs:
with gr.TabItem("π
Main Leaderboard", id="main"):
gr.HTML("<h2>Main Leaderboard</h2>")
initial_leaderboard = create_leaderboard_table()
with gr.Row():
ranking_method = gr.Radio(
["Combined Score (WER 70%, CER 30%)", "WER Only", "CER Only"],
label="π Ranking Method",
value="Combined Score (WER 70%, CER 30%)",
info="Choose how to rank the models"
)
leaderboard_view = gr.DataFrame(
value=initial_leaderboard,
interactive=False,
label="π Leaderboard Rankings - Lower scores indicate better performance",
wrap=True,
height=400
)
# Performance chart
gr.Markdown("### π Visual Performance Comparison")
performance_chart = gr.Plot(
value=create_performance_chart(),
label="Model Performance Visualization"
)
ranking_method.change(
fn=update_ranking,
inputs=[ranking_method],
outputs=[leaderboard_view]
)
with gr.Accordion("π Understanding ASR Metrics", open=False):
gr.Markdown("""
## π― Automatic Speech Recognition Evaluation Metrics
### Word Error Rate (WER)
**WER** measures transcription accuracy at the word level:
- **Formula:** `(Substitutions + Insertions + Deletions) / Total Reference Words`
- **Range:** 0% (perfect) to 100%+ (very poor)
- **Interpretation:**
- 0-5%: π Excellent performance
- 5-15%: π₯ Good performance
- 15-30%: π Fair performance
- 30%+: Poor performance
### Character Error Rate (CER)
**CER** measures transcription accuracy at the character level:
- **Advantage:** More granular than WER, captures partial matches
- **Benefit for Bambara:** Particularly valuable for agglutinative languages
- **Typical Range:** Usually lower than WER values
### Combined Score (Primary Ranking Metric)
**Formula:** `Combined Score = 0.7 Γ WER + 0.3 Γ CER`
- **Rationale:** Balanced evaluation emphasizing word-level accuracy
- **Usage:** Primary metric for model ranking
### π― Performance Categories
- π **Excellent**: < 15% Combined Score
- π₯ **Good**: 15-30% Combined Score
- π **Fair**: > 30% Combined Score
""")
with gr.TabItem("π€ Submit New Model", id="submit"):
gr.HTML("<h2>Submit Your Bambara ASR Model</h2>")
gr.Markdown("""
### π Ready to benchmark your model? Submit your results and join the leaderboard!
Follow these steps to submit your Bambara ASR model for evaluation.
""")
with gr.Group(elem_classes="form-section"):
with gr.Row():
with gr.Column(scale=2):
model_name_input = gr.Textbox(
label="π€ Model Name",
placeholder="e.g., MALIBA-AI/bambara-whisper-large",
info="Use a descriptive name (organization/model format preferred)"
)
model_type = gr.Dropdown(
label="π·οΈ Model Type",
choices=["Whisper-based", "Wav2Vec2", "Foundation", "Custom", "Fine-tuned", "Multilingual", "Other"],
value="Custom",
info="Select the type/architecture of your model"
)
origin_country = gr.Dropdown(
label="π Origin/Institution",
choices=["Mali", "Senegal", "Burkina Faso", "Niger", "Guinea", "Ivory Coast", "USA", "France", "Canada", "UK", "Other"],
value="Mali",
info="Country or region of the developing institution"
)
with gr.Column(scale=1):
gr.Markdown("""
#### π Submission Requirements
**CSV Format:**
- Columns: `id`, `text`
- Match all reference dataset IDs
- No duplicate IDs
- Text transcriptions in Bambara
**Data Quality:**
- Clean, normalized text
- Consistent formatting
- Complete coverage of test set
""")
csv_upload = gr.File(
label="π Upload Predictions CSV",
file_types=[".csv"],
info="Upload your model's transcriptions in the required CSV format"
)
submit_btn = gr.Button("π Submit Model", variant="primary", size="lg", elem_classes=['gradio-button', 'primary'])
output_msg = gr.Markdown(label="π’ Submission Status")
with gr.Row():
leaderboard_display = gr.DataFrame(
label="π Updated Leaderboard",
value=initial_leaderboard,
interactive=False,
wrap=True,
height=400
)
updated_chart = gr.Plot(
label="π Updated Performance Chart"
)
submit_btn.click(
fn=process_submission,
inputs=[model_name_input, csv_upload, model_type, origin_country],
outputs=[output_msg, leaderboard_display, updated_chart]
)
with gr.TabItem("π Compare Models", id="compare"):
gr.HTML("<h2>Compare Two Models</h2>")
gr.Markdown("### Select two models to compare their performance side-by-side")
with gr.Row():
current_data = get_current_leaderboard()
model_names = current_data["Model_Name"].tolist() if not current_data.empty else []
model_1_dropdown = gr.Dropdown(
choices=model_names,
label="π€ Model 1",
info="Select the first model for comparison"
)
model_2_dropdown = gr.Dropdown(
choices=model_names,
label="π€ Model 2",
info="Select the second model for comparison"
)
compare_btn = gr.Button("β‘ Compare Models", variant="primary", elem_classes=['gradio-button', 'primary'])
comparison_note = gr.Markdown("""
**Note on Comparison Results:**
- Positive difference values (π’) indicate Model 1 performed better
- Negative difference values (π΄) indicate Model 2 performed better
- Lower error rates indicate better performance
""", visible=False)
comparison_output = gr.DataFrame(
label="π Model Comparison Results",
value=pd.DataFrame([{"Info": "Select two models and click Compare to see the results."}]),
interactive=False
)
def update_comparison_table(m1, m2):
if not m1 or not m2:
return gr.update(visible=False), pd.DataFrame([{"Info": "Please select both models before clicking Compare."}])
if m1 == m2:
return gr.update(visible=False), pd.DataFrame([{"Info": "Please select two different models to compare."}])
df = compare_models(m1, m2)
return gr.update(visible=True), df
compare_btn.click(
fn=update_comparison_table,
inputs=[model_1_dropdown, model_2_dropdown],
outputs=[comparison_note, comparison_output]
)
with gr.TabItem("π Dataset & Methodology", id="dataset"):
gr.HTML("<h2>Dataset & Methodology</h2>")
gr.Markdown("""
## π― About the Bambara Speech Recognition Benchmark
### π Dataset Overview
Our benchmark is built on the **`sudoping01/bambara-speech-recognition-benchmark`** dataset, featuring:
- **ποΈ Diverse Audio Samples:** Various speakers, dialects, and recording conditions
- **π£οΈ Speaker Variety:** Multiple native Bambara speakers from different regions
- **π΅ Acoustic Diversity:** Different recording environments and quality levels
- **β
Quality Assurance:** Manually validated transcriptions
- **π Content Variety:** Multiple domains and speaking styles
### π¬ Evaluation Methodology
#### Text Normalization Process
1. **Lowercase conversion** for consistency
2. **Punctuation removal** to focus on linguistic content
3. **Whitespace normalization** for standardized formatting
4. **Unicode normalization** for proper character handling
#### Quality Controls
- **Outlier Detection:** Extreme error rates are capped to prevent skewing
- **Data Validation:** Comprehensive format and completeness checks
- **Duplicate Prevention:** Automatic detection of duplicate submissions
- **Missing Data Handling:** Identification of incomplete submissions
### π How to Participate
#### Step 1: Access the Dataset
```python
from datasets import load_dataset
dataset = load_dataset("sudoping01/bambara-speech-recognition-benchmark")
```
#### Step 2: Generate Predictions
- Process the audio files with your ASR model
- Generate transcriptions for each audio sample
- Ensure your model outputs text in Bambara language
#### Step 3: Format Results
Create a CSV file with exactly these columns:
- **`id`**: Sample identifier (must match dataset IDs)
- **`text`**: Your model's transcription
#### Step 4: Submit & Evaluate
- Upload your CSV using the submission form
- Your model will be automatically evaluated
- Results appear on the leaderboard immediately
### π Recognition & Impact
**Top-performing models will be:**
- Featured prominently on our leaderboard
- Highlighted in MALIBA-AI communications
- Considered for inclusion in production systems
- Invited to present at community events
### π€ Community Guidelines
- **Reproducibility:** Please provide model details and methodology
- **Fair Play:** No data leakage or unfair advantages
- **Collaboration:** Share insights and learnings with the community
- **Attribution:** Properly cite the benchmark in publications
### π Technical Specifications
| Aspect | Details |
|--------|---------|
| **Audio Format** | WAV, various sample rates |
| **Language** | Bambara (bam) |
| **Evaluation Metrics** | WER, CER, Combined Score |
| **Text Encoding** | UTF-8 |
| **Submission Format** | CSV with id, text columns |
""")
# Citation and Footer
with gr.Group(elem_classes="content-card"):
gr.HTML("""
<div class="citation-block">
<h2>π Citation</h2>
<p>If you use the Bambara ASR Leaderboard for your scientific publication, or if you find the resources useful, please cite our work:</p>
<pre>
@misc{bambara_asr_leaderboard_2025,
title={Bambara Speech Recognition Leaderboard},
author={MALIBA-AI Team},
year={2025},
url={https://huggingface.co/spaces/MALIBA-AI/bambara-asr-leaderboard},
note={A community initiative for advancing Bambara speech recognition technology}
}
</pre>
</div>
""")
gr.HTML("""
<div style="text-align: center; margin-top: 30px; padding-top: 20px; border-top: 2px solid #e9ecef;">
<h3 style="color: #7d3561; margin-bottom: 15px;">About MALIBA-AI</h3>
<p style="font-size: 16px; line-height: 1.6; max-width: 800px; margin: 0 auto;">
<strong>MALIBA-AI: Empowering Mali's Future Through Community-Driven AI Innovation</strong><br>
<em>"No Malian Language Left Behind"</em>
</p>
<p style="margin-top: 15px;">
This leaderboard is maintained by the MALIBA-AI initiative to track progress in Bambara speech recognition technology.
For more information, visit <a href="https://maliba-ai.org/" style="color: #7d3561; font-weight: 600;">MALIBA-AI</a> or
<a href="https://huggingface.co/MALIBA-AI" style="color: #7d3561; font-weight: 600;">our Hugging Face page</a>.
</p>
<div style="margin-top: 20px;">
<span style="font-size: 2em;">π²π±</span>
<span style="margin: 0 20px; color: #7d3561; font-weight: 600;">β’</span>
<span style="font-size: 2em;">π€</span>
<span style="margin: 0 20px; color: #7d3561; font-weight: 600;">β’</span>
<span style="font-size: 2em;">π</span>
</div>
</div>
""")
if __name__ == "__main__":
demo.launch() |