Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,17 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
from datasets import load_dataset
|
| 4 |
-
from jiwer import wer, cer
|
| 5 |
import os
|
| 6 |
from datetime import datetime
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
# Load the Bambara ASR dataset
|
| 9 |
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
|
| 10 |
references = {row["id"]: row["text"] for row in dataset}
|
|
@@ -14,59 +21,26 @@ leaderboard_file = "leaderboard.csv"
|
|
| 14 |
if not os.path.exists(leaderboard_file):
|
| 15 |
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
|
| 16 |
|
| 17 |
-
def preprocess_text(text):
|
| 18 |
-
"""
|
| 19 |
-
Custom text preprocessing to handle Bambara text properly
|
| 20 |
-
"""
|
| 21 |
-
# Convert to string in case it's not
|
| 22 |
-
text = str(text)
|
| 23 |
-
|
| 24 |
-
# Remove punctuation
|
| 25 |
-
for punct in [',', '.', '!', '?', ';', ':', '"', "'"]:
|
| 26 |
-
text = text.replace(punct, '')
|
| 27 |
-
|
| 28 |
-
# Convert to lowercase
|
| 29 |
-
text = text.lower()
|
| 30 |
-
|
| 31 |
-
# Normalize whitespace
|
| 32 |
-
text = ' '.join(text.split())
|
| 33 |
-
|
| 34 |
-
return text
|
| 35 |
-
|
| 36 |
def process_submission(submitter_name, csv_file):
|
| 37 |
try:
|
| 38 |
# Read and validate the uploaded CSV
|
| 39 |
df = pd.read_csv(csv_file)
|
| 40 |
-
|
| 41 |
if set(df.columns) != {"id", "text"}:
|
| 42 |
return "Error: CSV must contain exactly 'id' and 'text' columns.", None
|
| 43 |
-
|
| 44 |
if df["id"].duplicated().any():
|
| 45 |
return "Error: Duplicate 'id's found in the CSV.", None
|
| 46 |
-
|
| 47 |
if set(df["id"]) != set(references.keys()):
|
| 48 |
return "Error: CSV 'id's must match the dataset 'id's.", None
|
| 49 |
-
|
| 50 |
# Calculate WER and CER for each prediction
|
| 51 |
wers, cers = [], []
|
| 52 |
-
|
| 53 |
for _, row in df.iterrows():
|
| 54 |
-
ref =
|
| 55 |
-
pred =
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
continue
|
| 60 |
-
|
| 61 |
-
# Calculate metrics with no transform (we did preprocessing already)
|
| 62 |
-
# This avoids the error with jiwer's transform
|
| 63 |
-
wers.append(wer(ref, pred))
|
| 64 |
-
cers.append(cer(ref, pred))
|
| 65 |
-
|
| 66 |
# Compute average WER and CER
|
| 67 |
-
if not wers or not cers:
|
| 68 |
-
return "Error: No valid text pairs for evaluation after preprocessing.", None
|
| 69 |
-
|
| 70 |
avg_wer = sum(wers) / len(wers)
|
| 71 |
avg_cer = sum(cers) / len(cers)
|
| 72 |
|
|
@@ -81,7 +55,6 @@ def process_submission(submitter_name, csv_file):
|
|
| 81 |
leaderboard.to_csv(leaderboard_file, index=False)
|
| 82 |
|
| 83 |
return "Submission processed successfully!", leaderboard
|
| 84 |
-
|
| 85 |
except Exception as e:
|
| 86 |
return f"Error processing submission: {str(e)}", None
|
| 87 |
|
|
@@ -90,18 +63,17 @@ with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
|
|
| 90 |
gr.Markdown(
|
| 91 |
"""
|
| 92 |
# Bambara ASR Leaderboard
|
| 93 |
-
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
|
| 94 |
-
The 'id's must match those in the dataset.
|
| 95 |
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset).
|
|
|
|
| 96 |
- **WER**: Word Error Rate (lower is better).
|
| 97 |
- **CER**: Character Error Rate (lower is better).
|
| 98 |
"""
|
| 99 |
)
|
| 100 |
-
|
| 101 |
with gr.Row():
|
| 102 |
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
|
| 103 |
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
|
| 104 |
-
|
| 105 |
submit_btn = gr.Button("Submit")
|
| 106 |
output_msg = gr.Textbox(label="Status", interactive=False)
|
| 107 |
leaderboard_display = gr.DataFrame(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
from datasets import load_dataset
|
| 4 |
+
from jiwer import wer, cer, transforms
|
| 5 |
import os
|
| 6 |
from datetime import datetime
|
| 7 |
|
| 8 |
+
# Define text normalization transform
|
| 9 |
+
transform = transforms.Compose([
|
| 10 |
+
transforms.RemovePunctuation(),
|
| 11 |
+
transforms.ToLowerCase(),
|
| 12 |
+
transforms.RemoveWhiteSpace(replace_by_space=True),
|
| 13 |
+
])
|
| 14 |
+
|
| 15 |
# Load the Bambara ASR dataset
|
| 16 |
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
|
| 17 |
references = {row["id"]: row["text"] for row in dataset}
|
|
|
|
| 21 |
if not os.path.exists(leaderboard_file):
|
| 22 |
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def process_submission(submitter_name, csv_file):
|
| 25 |
try:
|
| 26 |
# Read and validate the uploaded CSV
|
| 27 |
df = pd.read_csv(csv_file)
|
|
|
|
| 28 |
if set(df.columns) != {"id", "text"}:
|
| 29 |
return "Error: CSV must contain exactly 'id' and 'text' columns.", None
|
|
|
|
| 30 |
if df["id"].duplicated().any():
|
| 31 |
return "Error: Duplicate 'id's found in the CSV.", None
|
|
|
|
| 32 |
if set(df["id"]) != set(references.keys()):
|
| 33 |
return "Error: CSV 'id's must match the dataset 'id's.", None
|
| 34 |
+
|
| 35 |
# Calculate WER and CER for each prediction
|
| 36 |
wers, cers = [], []
|
|
|
|
| 37 |
for _, row in df.iterrows():
|
| 38 |
+
ref = references[row["id"]]
|
| 39 |
+
pred = row["text"]
|
| 40 |
+
wers.append(wer(ref, pred, truth_transform=transform, hypothesis_transform=transform))
|
| 41 |
+
cers.append(cer(ref, pred, truth_transform=transform, hypothesis_transform=transform))
|
| 42 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# Compute average WER and CER
|
|
|
|
|
|
|
|
|
|
| 44 |
avg_wer = sum(wers) / len(wers)
|
| 45 |
avg_cer = sum(cers) / len(cers)
|
| 46 |
|
|
|
|
| 55 |
leaderboard.to_csv(leaderboard_file, index=False)
|
| 56 |
|
| 57 |
return "Submission processed successfully!", leaderboard
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
return f"Error processing submission: {str(e)}", None
|
| 60 |
|
|
|
|
| 63 |
gr.Markdown(
|
| 64 |
"""
|
| 65 |
# Bambara ASR Leaderboard
|
| 66 |
+
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
|
| 67 |
+
The 'id's must match those in the dataset.
|
| 68 |
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset).
|
| 69 |
+
|
| 70 |
- **WER**: Word Error Rate (lower is better).
|
| 71 |
- **CER**: Character Error Rate (lower is better).
|
| 72 |
"""
|
| 73 |
)
|
|
|
|
| 74 |
with gr.Row():
|
| 75 |
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
|
| 76 |
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
|
|
|
|
| 77 |
submit_btn = gr.Button("Submit")
|
| 78 |
output_msg = gr.Textbox(label="Status", interactive=False)
|
| 79 |
leaderboard_display = gr.DataFrame(
|