Spaces:
Building
Building
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import os
|
|
@@ -5,6 +183,7 @@ import re
|
|
| 5 |
from datetime import datetime
|
| 6 |
|
| 7 |
LEADERBOARD_FILE = "leaderboard.csv" # File to store leaderboard data
|
|
|
|
| 8 |
|
| 9 |
def clean_answer(answer):
|
| 10 |
if pd.isna(answer):
|
|
@@ -12,53 +191,17 @@ def clean_answer(answer):
|
|
| 12 |
answer = str(answer)
|
| 13 |
clean = re.sub(r'[^A-Da-d]', '', answer)
|
| 14 |
if clean:
|
| 15 |
-
|
| 16 |
-
if first_letter in ['A', 'B', 'C', 'D']:
|
| 17 |
-
return first_letter
|
| 18 |
return None
|
| 19 |
|
| 20 |
-
def write_evaluation_results(results, output_file):
|
| 21 |
-
os.makedirs(os.path.dirname(output_file) if os.path.dirname(output_file) else '.', exist_ok=True)
|
| 22 |
-
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 23 |
-
|
| 24 |
-
output_text = [
|
| 25 |
-
f"Evaluation Results for Model: {results['model_name']}",
|
| 26 |
-
f"Timestamp: {timestamp}",
|
| 27 |
-
"-" * 50,
|
| 28 |
-
f"Overall Accuracy (including invalid): {results['overall_accuracy']:.2%}",
|
| 29 |
-
f"Accuracy (valid predictions only): {results['valid_accuracy']:.2%}",
|
| 30 |
-
f"Total Questions: {results['total_questions']}",
|
| 31 |
-
f"Valid Predictions: {results['valid_predictions']}",
|
| 32 |
-
f"Invalid/Malformed Predictions: {results['invalid_predictions']}",
|
| 33 |
-
f"Correct Predictions: {results['correct_predictions']}",
|
| 34 |
-
"\nPerformance by Field:",
|
| 35 |
-
"-" * 50
|
| 36 |
-
]
|
| 37 |
-
|
| 38 |
-
for field, metrics in results['field_performance'].items():
|
| 39 |
-
field_results = [
|
| 40 |
-
f"\nField: {field}",
|
| 41 |
-
f"Accuracy (including invalid): {metrics['accuracy']:.2%}",
|
| 42 |
-
f"Accuracy (valid only): {metrics['valid_accuracy']:.2%}",
|
| 43 |
-
f"Correct: {metrics['correct']}/{metrics['total']}",
|
| 44 |
-
f"Invalid predictions: {metrics['invalid']}"
|
| 45 |
-
]
|
| 46 |
-
output_text.extend(field_results)
|
| 47 |
-
|
| 48 |
-
with open(output_file, 'w') as f:
|
| 49 |
-
f.write('\n'.join(output_text))
|
| 50 |
-
print('\n'.join(output_text))
|
| 51 |
-
print(f"\nResults have been saved to: {output_file}")
|
| 52 |
-
|
| 53 |
def update_leaderboard(results):
|
| 54 |
-
# Add results to the leaderboard file
|
| 55 |
new_entry = {
|
| 56 |
"Model Name": results['model_name'],
|
| 57 |
-
"Overall Accuracy":
|
| 58 |
-
"Valid Accuracy":
|
| 59 |
"Correct Predictions": results['correct_predictions'],
|
| 60 |
"Total Questions": results['total_questions'],
|
| 61 |
-
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 62 |
}
|
| 63 |
leaderboard_df = pd.DataFrame([new_entry])
|
| 64 |
if os.path.exists(LEADERBOARD_FILE):
|
|
@@ -66,111 +209,69 @@ def update_leaderboard(results):
|
|
| 66 |
leaderboard_df = pd.concat([existing_df, leaderboard_df], ignore_index=True)
|
| 67 |
leaderboard_df.to_csv(LEADERBOARD_FILE, index=False)
|
| 68 |
|
| 69 |
-
def display_leaderboard():
|
| 70 |
-
if not os.path.exists(LEADERBOARD_FILE):
|
| 71 |
-
return "Leaderboard is empty."
|
| 72 |
-
leaderboard_df = pd.read_csv(LEADERBOARD_FILE)
|
| 73 |
-
return leaderboard_df.to_markdown(index=False)
|
| 74 |
-
|
| 75 |
def evaluate_predictions(prediction_file):
|
| 76 |
-
ground_truth_file = "ground_truth.csv"
|
| 77 |
-
if not prediction_file:
|
| 78 |
-
return "Prediction file not uploaded", None
|
| 79 |
-
|
| 80 |
if not os.path.exists(ground_truth_file):
|
| 81 |
-
return "Ground truth file not found"
|
|
|
|
|
|
|
| 82 |
|
| 83 |
try:
|
| 84 |
predictions_df = pd.read_csv(prediction_file.name)
|
| 85 |
ground_truth_df = pd.read_csv(ground_truth_file)
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
filename = os.path.basename(prediction_file.name)
|
| 90 |
-
if "_" in filename and "." in filename:
|
| 91 |
-
model_name = filename.split('_')[1].split('.')[0]
|
| 92 |
-
else:
|
| 93 |
-
model_name = "unknown_model"
|
| 94 |
-
except IndexError:
|
| 95 |
-
model_name = "unknown_model"
|
| 96 |
-
|
| 97 |
-
# Merge dataframes
|
| 98 |
-
merged_df = pd.merge(
|
| 99 |
-
predictions_df,
|
| 100 |
-
ground_truth_df,
|
| 101 |
-
on='question_id',
|
| 102 |
-
how='inner'
|
| 103 |
-
)
|
| 104 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 105 |
-
|
| 106 |
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 107 |
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 108 |
total_predictions = len(merged_df)
|
| 109 |
total_valid_predictions = len(valid_predictions)
|
| 110 |
|
| 111 |
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 112 |
-
valid_accuracy =
|
| 113 |
-
correct_predictions / total_valid_predictions
|
| 114 |
-
if total_valid_predictions > 0
|
| 115 |
-
else 0
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
field_metrics = {}
|
| 119 |
-
for field in merged_df['Field'].unique():
|
| 120 |
-
field_data = merged_df[merged_df['Field'] == field]
|
| 121 |
-
field_valid_data = field_data.dropna(subset=['pred_answer'])
|
| 122 |
-
|
| 123 |
-
field_correct = (field_valid_data['pred_answer'] == field_valid_data['Answer']).sum()
|
| 124 |
-
field_total = len(field_data)
|
| 125 |
-
field_valid_total = len(field_valid_data)
|
| 126 |
-
field_invalid = field_total - field_valid_total
|
| 127 |
-
|
| 128 |
-
field_metrics[field] = {
|
| 129 |
-
'accuracy': field_correct / field_total if field_total > 0 else 0,
|
| 130 |
-
'valid_accuracy': field_correct / field_valid_total if field_valid_total > 0 else 0,
|
| 131 |
-
'correct': field_correct,
|
| 132 |
-
'total': field_total,
|
| 133 |
-
'invalid': field_invalid
|
| 134 |
-
}
|
| 135 |
|
| 136 |
results = {
|
| 137 |
'model_name': model_name,
|
| 138 |
'overall_accuracy': overall_accuracy,
|
| 139 |
'valid_accuracy': valid_accuracy,
|
| 140 |
-
'total_questions': total_predictions,
|
| 141 |
-
'valid_predictions': total_valid_predictions,
|
| 142 |
-
'invalid_predictions': invalid_predictions,
|
| 143 |
'correct_predictions': correct_predictions,
|
| 144 |
-
'
|
| 145 |
}
|
| 146 |
|
| 147 |
update_leaderboard(results)
|
| 148 |
-
|
| 149 |
-
write_evaluation_results(results, output_file)
|
| 150 |
-
return "Evaluation completed successfully! Leaderboard updated.", output_file
|
| 151 |
-
|
| 152 |
except Exception as e:
|
| 153 |
-
return f"Error during evaluation: {str(e)}"
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
|
| 160 |
-
|
|
|
|
| 161 |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 162 |
-
with gr.
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
# import pandas as pd
|
| 3 |
+
# import os
|
| 4 |
+
# import re
|
| 5 |
+
# from datetime import datetime
|
| 6 |
+
|
| 7 |
+
# LEADERBOARD_FILE = "leaderboard.csv" # File to store leaderboard data
|
| 8 |
+
|
| 9 |
+
# def clean_answer(answer):
|
| 10 |
+
# if pd.isna(answer):
|
| 11 |
+
# return None
|
| 12 |
+
# answer = str(answer)
|
| 13 |
+
# clean = re.sub(r'[^A-Da-d]', '', answer)
|
| 14 |
+
# if clean:
|
| 15 |
+
# first_letter = clean[0].upper()
|
| 16 |
+
# if first_letter in ['A', 'B', 'C', 'D']:
|
| 17 |
+
# return first_letter
|
| 18 |
+
# return None
|
| 19 |
+
|
| 20 |
+
# def write_evaluation_results(results, output_file):
|
| 21 |
+
# os.makedirs(os.path.dirname(output_file) if os.path.dirname(output_file) else '.', exist_ok=True)
|
| 22 |
+
# timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 23 |
+
|
| 24 |
+
# output_text = [
|
| 25 |
+
# f"Evaluation Results for Model: {results['model_name']}",
|
| 26 |
+
# f"Timestamp: {timestamp}",
|
| 27 |
+
# "-" * 50,
|
| 28 |
+
# f"Overall Accuracy (including invalid): {results['overall_accuracy']:.2%}",
|
| 29 |
+
# f"Accuracy (valid predictions only): {results['valid_accuracy']:.2%}",
|
| 30 |
+
# f"Total Questions: {results['total_questions']}",
|
| 31 |
+
# f"Valid Predictions: {results['valid_predictions']}",
|
| 32 |
+
# f"Invalid/Malformed Predictions: {results['invalid_predictions']}",
|
| 33 |
+
# f"Correct Predictions: {results['correct_predictions']}",
|
| 34 |
+
# "\nPerformance by Field:",
|
| 35 |
+
# "-" * 50
|
| 36 |
+
# ]
|
| 37 |
+
|
| 38 |
+
# for field, metrics in results['field_performance'].items():
|
| 39 |
+
# field_results = [
|
| 40 |
+
# f"\nField: {field}",
|
| 41 |
+
# f"Accuracy (including invalid): {metrics['accuracy']:.2%}",
|
| 42 |
+
# f"Accuracy (valid only): {metrics['valid_accuracy']:.2%}",
|
| 43 |
+
# f"Correct: {metrics['correct']}/{metrics['total']}",
|
| 44 |
+
# f"Invalid predictions: {metrics['invalid']}"
|
| 45 |
+
# ]
|
| 46 |
+
# output_text.extend(field_results)
|
| 47 |
+
|
| 48 |
+
# with open(output_file, 'w') as f:
|
| 49 |
+
# f.write('\n'.join(output_text))
|
| 50 |
+
# print('\n'.join(output_text))
|
| 51 |
+
# print(f"\nResults have been saved to: {output_file}")
|
| 52 |
+
|
| 53 |
+
# def update_leaderboard(results):
|
| 54 |
+
# # Add results to the leaderboard file
|
| 55 |
+
# new_entry = {
|
| 56 |
+
# "Model Name": results['model_name'],
|
| 57 |
+
# "Overall Accuracy": f"{results['overall_accuracy']:.2%}",
|
| 58 |
+
# "Valid Accuracy": f"{results['valid_accuracy']:.2%}",
|
| 59 |
+
# "Correct Predictions": results['correct_predictions'],
|
| 60 |
+
# "Total Questions": results['total_questions'],
|
| 61 |
+
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 62 |
+
# }
|
| 63 |
+
# leaderboard_df = pd.DataFrame([new_entry])
|
| 64 |
+
# if os.path.exists(LEADERBOARD_FILE):
|
| 65 |
+
# existing_df = pd.read_csv(LEADERBOARD_FILE)
|
| 66 |
+
# leaderboard_df = pd.concat([existing_df, leaderboard_df], ignore_index=True)
|
| 67 |
+
# leaderboard_df.to_csv(LEADERBOARD_FILE, index=False)
|
| 68 |
+
|
| 69 |
+
# def display_leaderboard():
|
| 70 |
+
# if not os.path.exists(LEADERBOARD_FILE):
|
| 71 |
+
# return "Leaderboard is empty."
|
| 72 |
+
# leaderboard_df = pd.read_csv(LEADERBOARD_FILE)
|
| 73 |
+
# return leaderboard_df.to_markdown(index=False)
|
| 74 |
+
|
| 75 |
+
# def evaluate_predictions(prediction_file):
|
| 76 |
+
# ground_truth_file = "ground_truth.csv" # Specify the path to the ground truth file
|
| 77 |
+
# if not prediction_file:
|
| 78 |
+
# return "Prediction file not uploaded", None
|
| 79 |
+
|
| 80 |
+
# if not os.path.exists(ground_truth_file):
|
| 81 |
+
# return "Ground truth file not found", None
|
| 82 |
+
|
| 83 |
+
# try:
|
| 84 |
+
# predictions_df = pd.read_csv(prediction_file.name)
|
| 85 |
+
# ground_truth_df = pd.read_csv(ground_truth_file)
|
| 86 |
+
|
| 87 |
+
# # Extract model name
|
| 88 |
+
# try:
|
| 89 |
+
# filename = os.path.basename(prediction_file.name)
|
| 90 |
+
# if "_" in filename and "." in filename:
|
| 91 |
+
# model_name = filename.split('_')[1].split('.')[0]
|
| 92 |
+
# else:
|
| 93 |
+
# model_name = "unknown_model"
|
| 94 |
+
# except IndexError:
|
| 95 |
+
# model_name = "unknown_model"
|
| 96 |
+
|
| 97 |
+
# # Merge dataframes
|
| 98 |
+
# merged_df = pd.merge(
|
| 99 |
+
# predictions_df,
|
| 100 |
+
# ground_truth_df,
|
| 101 |
+
# on='question_id',
|
| 102 |
+
# how='inner'
|
| 103 |
+
# )
|
| 104 |
+
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 105 |
+
# invalid_predictions = merged_df['pred_answer'].isna().sum()
|
| 106 |
+
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 107 |
+
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 108 |
+
# total_predictions = len(merged_df)
|
| 109 |
+
# total_valid_predictions = len(valid_predictions)
|
| 110 |
+
|
| 111 |
+
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 112 |
+
# valid_accuracy = (
|
| 113 |
+
# correct_predictions / total_valid_predictions
|
| 114 |
+
# if total_valid_predictions > 0
|
| 115 |
+
# else 0
|
| 116 |
+
# )
|
| 117 |
+
|
| 118 |
+
# field_metrics = {}
|
| 119 |
+
# for field in merged_df['Field'].unique():
|
| 120 |
+
# field_data = merged_df[merged_df['Field'] == field]
|
| 121 |
+
# field_valid_data = field_data.dropna(subset=['pred_answer'])
|
| 122 |
+
|
| 123 |
+
# field_correct = (field_valid_data['pred_answer'] == field_valid_data['Answer']).sum()
|
| 124 |
+
# field_total = len(field_data)
|
| 125 |
+
# field_valid_total = len(field_valid_data)
|
| 126 |
+
# field_invalid = field_total - field_valid_total
|
| 127 |
+
|
| 128 |
+
# field_metrics[field] = {
|
| 129 |
+
# 'accuracy': field_correct / field_total if field_total > 0 else 0,
|
| 130 |
+
# 'valid_accuracy': field_correct / field_valid_total if field_valid_total > 0 else 0,
|
| 131 |
+
# 'correct': field_correct,
|
| 132 |
+
# 'total': field_total,
|
| 133 |
+
# 'invalid': field_invalid
|
| 134 |
+
# }
|
| 135 |
+
|
| 136 |
+
# results = {
|
| 137 |
+
# 'model_name': model_name,
|
| 138 |
+
# 'overall_accuracy': overall_accuracy,
|
| 139 |
+
# 'valid_accuracy': valid_accuracy,
|
| 140 |
+
# 'total_questions': total_predictions,
|
| 141 |
+
# 'valid_predictions': total_valid_predictions,
|
| 142 |
+
# 'invalid_predictions': invalid_predictions,
|
| 143 |
+
# 'correct_predictions': correct_predictions,
|
| 144 |
+
# 'field_performance': field_metrics
|
| 145 |
+
# }
|
| 146 |
+
|
| 147 |
+
# update_leaderboard(results)
|
| 148 |
+
# output_file = "evaluation_results.txt"
|
| 149 |
+
# write_evaluation_results(results, output_file)
|
| 150 |
+
# return "Evaluation completed successfully! Leaderboard updated.", output_file
|
| 151 |
+
|
| 152 |
+
# except Exception as e:
|
| 153 |
+
# return f"Error during evaluation: {str(e)}", None
|
| 154 |
+
|
| 155 |
+
# # Gradio Interface
|
| 156 |
+
# description = "Upload a prediction CSV file to evaluate predictions against the ground truth and update the leaderboard."
|
| 157 |
+
|
| 158 |
+
# demo = gr.Blocks()
|
| 159 |
+
|
| 160 |
+
# with demo:
|
| 161 |
+
# gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 162 |
+
# with gr.Tab("Evaluate"):
|
| 163 |
+
# file_input = gr.File(label="Upload Prediction CSV")
|
| 164 |
+
# eval_status = gr.Textbox(label="Evaluation Status")
|
| 165 |
+
# eval_results_file = gr.File(label="Download Evaluation Results")
|
| 166 |
+
# eval_button = gr.Button("Evaluate")
|
| 167 |
+
# eval_button.click(
|
| 168 |
+
# evaluate_predictions, inputs=file_input, outputs=[eval_status, eval_results_file]
|
| 169 |
+
# )
|
| 170 |
+
# with gr.Tab("Leaderboard"):
|
| 171 |
+
# leaderboard_text = gr.Textbox(label="Leaderboard", interactive=False)
|
| 172 |
+
# refresh_button = gr.Button("Refresh Leaderboard")
|
| 173 |
+
# refresh_button.click(display_leaderboard, outputs=leaderboard_text)
|
| 174 |
+
|
| 175 |
+
# if __name__ == "__main__":
|
| 176 |
+
# demo.launch()
|
| 177 |
+
|
| 178 |
+
|
| 179 |
import gradio as gr
|
| 180 |
import pandas as pd
|
| 181 |
import os
|
|
|
|
| 183 |
from datetime import datetime
|
| 184 |
|
| 185 |
LEADERBOARD_FILE = "leaderboard.csv" # File to store leaderboard data
|
| 186 |
+
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
| 187 |
|
| 188 |
def clean_answer(answer):
|
| 189 |
if pd.isna(answer):
|
|
|
|
| 191 |
answer = str(answer)
|
| 192 |
clean = re.sub(r'[^A-Da-d]', '', answer)
|
| 193 |
if clean:
|
| 194 |
+
return clean[0].upper()
|
|
|
|
|
|
|
| 195 |
return None
|
| 196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
def update_leaderboard(results):
|
|
|
|
| 198 |
new_entry = {
|
| 199 |
"Model Name": results['model_name'],
|
| 200 |
+
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
| 201 |
+
"Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
| 202 |
"Correct Predictions": results['correct_predictions'],
|
| 203 |
"Total Questions": results['total_questions'],
|
| 204 |
+
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 205 |
}
|
| 206 |
leaderboard_df = pd.DataFrame([new_entry])
|
| 207 |
if os.path.exists(LEADERBOARD_FILE):
|
|
|
|
| 209 |
leaderboard_df = pd.concat([existing_df, leaderboard_df], ignore_index=True)
|
| 210 |
leaderboard_df.to_csv(LEADERBOARD_FILE, index=False)
|
| 211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
def evaluate_predictions(prediction_file):
|
| 213 |
+
ground_truth_file = "ground_truth.csv"
|
|
|
|
|
|
|
|
|
|
| 214 |
if not os.path.exists(ground_truth_file):
|
| 215 |
+
return "Ground truth file not found."
|
| 216 |
+
if not prediction_file:
|
| 217 |
+
return "Prediction file not uploaded."
|
| 218 |
|
| 219 |
try:
|
| 220 |
predictions_df = pd.read_csv(prediction_file.name)
|
| 221 |
ground_truth_df = pd.read_csv(ground_truth_file)
|
| 222 |
+
model_name = os.path.basename(prediction_file.name).split('_')[1].split('.')[0]
|
| 223 |
+
|
| 224 |
+
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 226 |
+
|
| 227 |
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 228 |
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 229 |
total_predictions = len(merged_df)
|
| 230 |
total_valid_predictions = len(valid_predictions)
|
| 231 |
|
| 232 |
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 233 |
+
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
results = {
|
| 236 |
'model_name': model_name,
|
| 237 |
'overall_accuracy': overall_accuracy,
|
| 238 |
'valid_accuracy': valid_accuracy,
|
|
|
|
|
|
|
|
|
|
| 239 |
'correct_predictions': correct_predictions,
|
| 240 |
+
'total_questions': total_predictions,
|
| 241 |
}
|
| 242 |
|
| 243 |
update_leaderboard(results)
|
| 244 |
+
return "Evaluation completed successfully! Leaderboard updated."
|
|
|
|
|
|
|
|
|
|
| 245 |
except Exception as e:
|
| 246 |
+
return f"Error during evaluation: {str(e)}"
|
| 247 |
|
| 248 |
+
def load_leaderboard():
|
| 249 |
+
if not os.path.exists(LEADERBOARD_FILE):
|
| 250 |
+
return pd.DataFrame({"Message": ["Leaderboard is empty."]})
|
| 251 |
+
return pd.read_csv(LEADERBOARD_FILE)
|
| 252 |
|
| 253 |
+
# Build Gradio App
|
| 254 |
+
with gr.Blocks() as demo:
|
| 255 |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 256 |
+
with gr.Tabs():
|
| 257 |
+
with gr.TabItem("🏅 Submission"):
|
| 258 |
+
file_input = gr.File(label="Upload Prediction CSV")
|
| 259 |
+
eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
|
| 260 |
+
eval_button = gr.Button("Evaluate and Update Leaderboard")
|
| 261 |
+
eval_button.click(
|
| 262 |
+
evaluate_predictions,
|
| 263 |
+
inputs=[file_input],
|
| 264 |
+
outputs=[eval_status],
|
| 265 |
+
)
|
| 266 |
+
with gr.TabItem("🏅 Leaderboard"):
|
| 267 |
+
leaderboard_table = gr.Dataframe(
|
| 268 |
+
value=load_leaderboard(),
|
| 269 |
+
label="Leaderboard",
|
| 270 |
+
interactive=False,
|
| 271 |
+
wrap=True,
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
| 275 |
+
|
| 276 |
+
demo.launch()
|
| 277 |
+
|