Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -274,7 +274,47 @@ def update_leaderboard(results):
|
|
| 274 |
except Exception as e:
|
| 275 |
print(f"Error updating leaderboard file: {e}")
|
| 276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
|
| 280 |
# def load_leaderboard():
|
|
@@ -419,6 +459,65 @@ def evaluate_predictions(prediction_file, model_name,Team_name ,add_to_leaderboa
|
|
| 419 |
initialize_leaderboard_file()
|
| 420 |
|
| 421 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 422 |
# Function to set default mode
|
| 423 |
# Function to set default mode
|
| 424 |
import gradio as gr
|
|
@@ -803,8 +902,8 @@ with gr.Blocks(css=css_tech_theme) as demo:
|
|
| 803 |
overall_accuracy_display = gr.Number(label="π Overall Accuracy (%)", interactive=False,scale=1,min_width=1200)
|
| 804 |
|
| 805 |
with gr.Row(elem_id="submission-buttons"):
|
| 806 |
-
|
| 807 |
-
|
| 808 |
eval_status = gr.Textbox(label="π οΈ Evaluation Status", interactive=False,scale=1,min_width=1200)
|
| 809 |
|
| 810 |
|
|
@@ -855,12 +954,64 @@ with gr.Blocks(css=css_tech_theme) as demo:
|
|
| 855 |
except Exception as e:
|
| 856 |
return f"Error during evaluation: {str(e)}", 0, gr.update(visible=False)
|
| 857 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 858 |
|
| 859 |
|
| 860 |
def handle_submission(file, model_name,Team_name):
|
| 861 |
# Handle leaderboard submission
|
| 862 |
status, _ = evaluate_predictions(file, model_name,Team_name, add_to_leaderboard=True)
|
| 863 |
return f"Submission to leaderboard completed: {status}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 864 |
|
| 865 |
# Connect button clicks to the functions
|
| 866 |
eval_button.click(
|
|
@@ -868,6 +1019,18 @@ with gr.Blocks(css=css_tech_theme) as demo:
|
|
| 868 |
inputs=[file_input, model_name_input,Team_name_input],
|
| 869 |
outputs=[eval_status, overall_accuracy_display, submit_button],
|
| 870 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 871 |
|
| 872 |
submit_button.click(
|
| 873 |
handle_submission,
|
|
@@ -890,6 +1053,19 @@ with gr.Blocks(css=css_tech_theme) as demo:
|
|
| 890 |
inputs=[],
|
| 891 |
outputs=[leaderboard_table],
|
| 892 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 893 |
|
| 894 |
# Post-Tabs Section
|
| 895 |
# gr.Markdown("""
|
|
|
|
| 274 |
except Exception as e:
|
| 275 |
print(f"Error updating leaderboard file: {e}")
|
| 276 |
|
| 277 |
+
def update_leaderboard_pro(results):
|
| 278 |
+
"""
|
| 279 |
+
Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
|
| 280 |
+
"""
|
| 281 |
+
new_entry = {
|
| 282 |
+
"Model Name": results['model_name'],
|
| 283 |
+
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
| 284 |
+
"Correct Predictions": results['correct_predictions'],
|
| 285 |
+
"Total Questions": results['total_questions'],
|
| 286 |
+
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 287 |
+
"Team Name": results['Team_name']
|
| 288 |
+
}
|
| 289 |
|
| 290 |
+
try:
|
| 291 |
+
# Update the local leaderboard file
|
| 292 |
+
new_entry_df = pd.DataFrame([new_entry])
|
| 293 |
+
file_exists = os.path.exists(LEADERBOARD_FILE)
|
| 294 |
+
|
| 295 |
+
new_entry_df.to_csv(
|
| 296 |
+
LEADERBOARD_FILE,
|
| 297 |
+
mode='a', # Append mode
|
| 298 |
+
index=False,
|
| 299 |
+
header=not file_exists # Write header only if the file is new
|
| 300 |
+
)
|
| 301 |
+
print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
|
| 302 |
+
|
| 303 |
+
# Push the updated file to the Hugging Face repository using HTTP API
|
| 304 |
+
api = HfApi()
|
| 305 |
+
token = HfFolder.get_token()
|
| 306 |
+
|
| 307 |
+
api.upload_file(
|
| 308 |
+
path_or_fileobj=LEADERBOARD_FILE,
|
| 309 |
+
path_in_repo="leaderboardPro.csv",
|
| 310 |
+
repo_id="SondosMB/Mobile-MMLU", # Your Space repository
|
| 311 |
+
repo_type="space",
|
| 312 |
+
token=token
|
| 313 |
+
)
|
| 314 |
+
print("Leaderboard changes pushed to Hugging Face repository.")
|
| 315 |
+
|
| 316 |
+
except Exception as e:
|
| 317 |
+
print(f"Error updating leaderboard file: {e}")
|
| 318 |
|
| 319 |
|
| 320 |
# def load_leaderboard():
|
|
|
|
| 459 |
initialize_leaderboard_file()
|
| 460 |
|
| 461 |
|
| 462 |
+
|
| 463 |
+
def evaluate_predictions_pro(prediction_file, model_name,Team_name ,add_to_leaderboard):
|
| 464 |
+
try:
|
| 465 |
+
ground_truth_path = hf_hub_download(
|
| 466 |
+
repo_id="SondosMB/ground-truth-dataset",
|
| 467 |
+
filename="ground_truth.csv",
|
| 468 |
+
repo_type="dataset",
|
| 469 |
+
use_auth_token=True
|
| 470 |
+
)
|
| 471 |
+
ground_truth_df = pd.read_csv(ground_truth_path)
|
| 472 |
+
except FileNotFoundError:
|
| 473 |
+
return "Ground truth file not found in the dataset repository.", load_leaderboard_pro()
|
| 474 |
+
except Exception as e:
|
| 475 |
+
return f"Error loading ground truth: {e}", load_leaderboard_pro()
|
| 476 |
+
|
| 477 |
+
if not prediction_file:
|
| 478 |
+
return "Prediction file not uploaded.", load_leaderboard_pro()
|
| 479 |
+
|
| 480 |
+
try:
|
| 481 |
+
#load prediction file
|
| 482 |
+
predictions_df = pd.read_csv(prediction_file.name)
|
| 483 |
+
# Validate required columns in prediction file
|
| 484 |
+
required_columns = ['question_id', 'predicted_answer']
|
| 485 |
+
missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
| 486 |
+
if missing_columns:
|
| 487 |
+
return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
| 488 |
+
load_leaderboard())
|
| 489 |
+
|
| 490 |
+
# Validate 'Answer' column in ground truth file
|
| 491 |
+
if 'Answer' not in ground_truth_df.columns:
|
| 492 |
+
return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard_pro()
|
| 493 |
+
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 494 |
+
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 495 |
+
|
| 496 |
+
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 497 |
+
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 498 |
+
total_predictions = len(merged_df)
|
| 499 |
+
|
| 500 |
+
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 501 |
+
|
| 502 |
+
results = {
|
| 503 |
+
'model_name': model_name if model_name else "Unknown Model",
|
| 504 |
+
'overall_accuracy': overall_accuracy,
|
| 505 |
+
'correct_predictions': correct_predictions,
|
| 506 |
+
'total_questions': total_predictions,
|
| 507 |
+
'Team_name': Team_name if Team_name else "Unknown Team",
|
| 508 |
+
}
|
| 509 |
+
|
| 510 |
+
if add_to_leaderboard:
|
| 511 |
+
update_leaderboard_pro(results)
|
| 512 |
+
return "Evaluation completed and added to leaderboard.", load_leaderboard_pro()
|
| 513 |
+
else:
|
| 514 |
+
return "Evaluation completed but not added to leaderboard.", load_leaderboard_pro()
|
| 515 |
+
|
| 516 |
+
except Exception as e:
|
| 517 |
+
return f"Error during evaluation: {str(e)}", load_leaderboard_pro()
|
| 518 |
+
initialize_leaderboard_file()
|
| 519 |
+
|
| 520 |
+
|
| 521 |
# Function to set default mode
|
| 522 |
# Function to set default mode
|
| 523 |
import gradio as gr
|
|
|
|
| 902 |
overall_accuracy_display = gr.Number(label="π Overall Accuracy (%)", interactive=False,scale=1,min_width=1200)
|
| 903 |
|
| 904 |
with gr.Row(elem_id="submission-buttons"):
|
| 905 |
+
eval_button_pro = gr.Button("π Evaluate",scale=1,min_width=1200)
|
| 906 |
+
submit_button_pro = gr.Button("π€ Prove and Submit to Leaderboard", elem_id="evaluation-status", visible=False,scale=1,min_width=1200)
|
| 907 |
eval_status = gr.Textbox(label="π οΈ Evaluation Status", interactive=False,scale=1,min_width=1200)
|
| 908 |
|
| 909 |
|
|
|
|
| 954 |
except Exception as e:
|
| 955 |
return f"Error during evaluation: {str(e)}", 0, gr.update(visible=False)
|
| 956 |
|
| 957 |
+
def handle_evaluation_pro(file, model_name, Team_name):
|
| 958 |
+
if not file:
|
| 959 |
+
return "Error: Please upload a prediction file.", 0, gr.update(visible=False)
|
| 960 |
+
if not model_name or model_name.strip() == "":
|
| 961 |
+
return "Error: Please enter a model name.", 0, gr.update(visible=False)
|
| 962 |
+
if not Team_name or Team_name.strip() == "":
|
| 963 |
+
return "Error: Please enter a Team name.", 0, gr.update(visible=False)
|
| 964 |
+
|
| 965 |
+
try:
|
| 966 |
+
# Load predictions file
|
| 967 |
+
predictions_df = pd.read_csv(file.name)
|
| 968 |
+
|
| 969 |
+
# Validate required columns
|
| 970 |
+
required_columns = ['question_id', 'predicted_answer']
|
| 971 |
+
missing_columns = [col for col in required_columns if col not in predictions_df.columns]
|
| 972 |
+
if missing_columns:
|
| 973 |
+
return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
|
| 974 |
+
0, gr.update(visible=False))
|
| 975 |
+
|
| 976 |
+
# Load ground truth
|
| 977 |
+
try:
|
| 978 |
+
ground_truth_path = hf_hub_download(
|
| 979 |
+
repo_id="SondosMB/ground-truth-dataset",
|
| 980 |
+
filename="ground_truth.csv",
|
| 981 |
+
repo_type="dataset",
|
| 982 |
+
use_auth_token=True
|
| 983 |
+
)
|
| 984 |
+
ground_truth_df = pd.read_csv(ground_truth_path)
|
| 985 |
+
except Exception as e:
|
| 986 |
+
return f"Error loading ground truth: {e}", 0, gr.update(visible=False)
|
| 987 |
+
|
| 988 |
+
# Perform evaluation calculations
|
| 989 |
+
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 990 |
+
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 991 |
+
|
| 992 |
+
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 993 |
+
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 994 |
+
total_predictions = len(merged_df)
|
| 995 |
+
|
| 996 |
+
overall_accuracy = (correct_predictions / total_predictions * 100) if total_predictions > 0 else 0
|
| 997 |
+
|
| 998 |
+
return "Evaluation completed successfully.", overall_accuracy, gr.update(visible=True)
|
| 999 |
+
|
| 1000 |
+
except Exception as e:
|
| 1001 |
+
return f"Error during evaluation: {str(e)}", 0, gr.update(visible=False)
|
| 1002 |
+
|
| 1003 |
|
| 1004 |
|
| 1005 |
def handle_submission(file, model_name,Team_name):
|
| 1006 |
# Handle leaderboard submission
|
| 1007 |
status, _ = evaluate_predictions(file, model_name,Team_name, add_to_leaderboard=True)
|
| 1008 |
return f"Submission to leaderboard completed: {status}"
|
| 1009 |
+
|
| 1010 |
+
def handle_submission_pro(file, model_name,Team_name):
|
| 1011 |
+
# Handle leaderboard submission
|
| 1012 |
+
status, _ = evaluate_predictions_pro(file, model_name,Team_name, add_to_leaderboard=True)
|
| 1013 |
+
return f"Submission to leaderboard completed: {status}"
|
| 1014 |
+
|
| 1015 |
|
| 1016 |
# Connect button clicks to the functions
|
| 1017 |
eval_button.click(
|
|
|
|
| 1019 |
inputs=[file_input, model_name_input,Team_name_input],
|
| 1020 |
outputs=[eval_status, overall_accuracy_display, submit_button],
|
| 1021 |
)
|
| 1022 |
+
|
| 1023 |
+
eval_button_pro.click(
|
| 1024 |
+
handle_evaluation_pro,
|
| 1025 |
+
inputs=[file_input, model_name_input,Team_name_input],
|
| 1026 |
+
outputs=[eval_status, overall_accuracy_display, submit_button_pro],
|
| 1027 |
+
)
|
| 1028 |
+
|
| 1029 |
+
submit_button_pro.click(
|
| 1030 |
+
handle_submission_pro,
|
| 1031 |
+
inputs=[file_input, model_name_input,Team_name_input],
|
| 1032 |
+
outputs=[eval_status],
|
| 1033 |
+
)
|
| 1034 |
|
| 1035 |
submit_button.click(
|
| 1036 |
handle_submission,
|
|
|
|
| 1053 |
inputs=[],
|
| 1054 |
outputs=[leaderboard_table],
|
| 1055 |
)
|
| 1056 |
+
with gr.TabItem("π
Leaderboard-pro"):
|
| 1057 |
+
leaderboard_table = gr.Dataframe(
|
| 1058 |
+
value=load_leaderboard_pro(),
|
| 1059 |
+
label="Leaderboard",
|
| 1060 |
+
interactive=False,
|
| 1061 |
+
wrap=True,
|
| 1062 |
+
)
|
| 1063 |
+
refresh_button = gr.Button("Refresh Leaderboard")
|
| 1064 |
+
refresh_button.click(
|
| 1065 |
+
lambda: load_leaderboard_pro(),
|
| 1066 |
+
inputs=[],
|
| 1067 |
+
outputs=[leaderboard_table],
|
| 1068 |
+
)
|
| 1069 |
|
| 1070 |
# Post-Tabs Section
|
| 1071 |
# gr.Markdown("""
|