# #################################### # Hubert SCT2T ED model # # #################################### world_size=$1 update_freq=$2 exp_name=$3 [ -z $world_size ] && world_size=24 [ -z $update_freq ] && update_freq=3 [ -z $exp_name ] && exp_name=sc2t_base_esen_${world_size}gpu_${update_freq}accum1 FAIRSEQ_ROOT=/mnt/output/users/v-kunwei/code/fairseq_mlstku CONFIG_DIR=/mnt/output/users/v-kunwei/code/stpretrain_scripts/config DATA_DIR="/mnt/output/users/v-kunwei/data/s2s_data/speech_esen" TEXT_DATA_DIR="/mnt/output/users/v-kunwei/data/s2s_data/text_esen" MODEL_DIR="/mnt/output/v-kunwei/data/s2s_data/exp/S2S_esen/$exp_name" [ -d $MODEL_DIR ] || mkdir -p $MODEL_DIR python $FAIRSEQ_ROOT/fairseq_cli/hydra_train.py \ --config-dir $CONFIG_DIR/pretrain \ --config-name sc2t_base_librispeech \ \ +task.store_labels=true \ task.labels='["km"]' \ model.label_rate=50 \ task.data=$DATA_DIR \ task.label_dir=$DATA_DIR \ task.text_cfg.text_data=$TEXT_DATA_DIR \ +task.text_cfg.data_config=config.yaml \ task.text_cfg.text_maxtokens_ratio=3.0 \ \ +criterion.dec_loss_type="ce" \ \ criterion.text_weight=1.0 \ \ model.use_rel_pos_enc=true \ +model.code_use_rel_pos_enc=true \ +model.pad_with_code=true \ model.text_transformer.no_scale_embedding=true \ model.text_transformer.layernorm_embedding=true \ +model.share_decoder_input_output_embed=true \ \ dataset.train_subset=\"train+en.kmu-spm\" \ dataset.valid_subset=\"valid+en_valid.kmu-spm\" \ dataset.num_workers=0 \ dataset.max_tokens=1000000 \ optimization.update_freq=[${update_freq}] \ optimization.max_update=400000 \ \ distributed_training.distributed_world_size=${world_size} \ \ common.tensorboard_logdir=$MODEL_DIR \ checkpoint.save_dir=$MODEL_DIR \ hydra.run.dir=$MODEL_DIR \ hydra.job.name=${exp_name} sleep 5m echo "All finished"