File size: 23,576 Bytes
fe79a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# leaderboard/refresh.py

import json
import logging
from pathlib import Path
from typing import Any, Dict, List, Optional
import pandas as pd
import yaml

# --- Logging Setup ---
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(module)s - %(message)s"
)
logger = logging.getLogger(__name__)

# --- Path Definitions ---
SCRIPT_DIR = Path(__file__).resolve().parent
PROJECT_ROOT = SCRIPT_DIR.parent

# --- Default Input/Output Paths ---
DEFAULT_MODELS_FOLDER = PROJECT_ROOT.parent / "llm-leaderboard/models_info"
DEFAULT_RESULTS_FOLDER = PROJECT_ROOT.parent / "llm-leaderboard/results"
OUTPUT_FOLDER = SCRIPT_DIR / "boards_data"
CONFIG_FILE_PATH = SCRIPT_DIR / "leaderboard_config.yaml"
TEMPLATE_FOLDER = SCRIPT_DIR / "template_jsons"

# --- Constants for Subtask Processing ---
NLU_NLG_TASK_KEYS = ["persian_nlu", "persian_nlg"]

ALL_LEADERBOARD_COLUMNS = [
    'Model Name', 'model_url', 'parameters_count', 'source_type', 'Average',
    'Persian IFEval', 'Persian MT-Bench', "PerMMLU",
    "PerCoR", "Persian NLU", "Persian NLG"
]


def load_tasks_from_config(config_path: Path) -> Dict[str, str]:
    
    if not config_path.exists():
        logger.error(f"Configuration file not found: {config_path}. Cannot load tasks.")
        return {}
    try:
        with open(config_path, 'r', encoding='utf-8') as f:
            config_data = yaml.safe_load(f)
        tasks_from_config = config_data.get('task_display_names', {})
        if not isinstance(tasks_from_config, dict):
            logger.error(f"'task_display_names' in {config_path} is not a dictionary.")
            return {}
        processed_tasks = {k: v for k, v in tasks_from_config.items() if str(k).lower() != 'all'}
        if not processed_tasks:
            logger.warning(f"No tasks in {config_path} under 'task_display_names' (excluding 'all').")
        return processed_tasks
    except Exception as e:
        logger.error(f"Error loading config {config_path}: {e}")
        return {}

class ModelEvaluationProcessor:
    def __init__(
        self,
        models_info_path: Path,
        results_base_path: Path,
        output_path: Path,
        template_jsons_path: Path,
    ) -> None:
        
        self.models_info_path = models_info_path
        self.results_base_path = results_base_path
        self.output_path = output_path
        self.template_folder = template_jsons_path
        self.output_path.mkdir(parents=True, exist_ok=True)

        self.tasks_config = load_tasks_from_config(CONFIG_FILE_PATH)
        if not self.tasks_config:
            logger.error("Tasks config is empty. Processing might be affected.")

        self.main_scores_map = {
            "ifeval": "strict_instruction_accuracy",
            "mt_bench": "score_mean",
            "MMLU": "acc",
            "persian_csr": "acc",
            "persian_nlg": "nlg_score",
            "persian_nlu": "nlu_score",
        }
    def _load_template(self, task_key: str) -> Dict[str, Any]:
        
        path = self.template_folder / f"{task_key}.json"
        try:
            return json.loads(path.read_text(encoding="utf-8"))
        except FileNotFoundError:
            logger.warning(f"Template file not found for task_key {task_key} at {path}. Using empty template.")
            return {}
        except Exception as e:
            logger.error(f"Cannot load template for task_key {task_key} from {path}: {e}")
            return {}

    def _deep_override(self, base: Any, override: Any) -> Any:
        if isinstance(base, dict) and isinstance(override, dict):
            merged = {}
            for k, v_base in base.items():
                if k in override and override[k] is not None and override[k] != -1:
                    merged[k] = self._deep_override(v_base, override[k])
                else:
                    merged[k] = v_base
            # for k, v_override in override.items():
            #      if k not in merged:
            #         merged[k] = v_override
            return merged
        elif override is not None and override != -1:
            return override
        else:
            return base


    def _load_model_raw_results(self, model_folder_name: str, task_key: str) -> Dict[str, Any]:
        
        results_filename = f"{model_folder_name}___{task_key}.json"
        results_file_path = self.results_base_path / results_filename

        if results_file_path.exists():
            try:
                with open(results_file_path, 'r', encoding='utf-8') as f:
                    data = json.load(f)
                return data if isinstance(data, dict) else {}
            except json.JSONDecodeError as e:
                logger.error(f"JSONDecodeError for model '{model_folder_name}', task_key '{task_key}' from {results_file_path}: {e}")
            except Exception as e:
                logger.error(f"Error loading results for model '{model_folder_name}', task_key '{task_key}' from {results_file_path}: {e}")
        else:
            logger.warning(f"Results file not found for model '{model_folder_name}', task_key '{task_key}' at {results_file_path}")
        return {}

    def load_and_fill_task_results(self, model_folder_name: str, task_key: str) -> Dict[str, Any]:
        
        template = self._load_template(task_key)
        raw_results = self._load_model_raw_results(model_folder_name, task_key)
        return self._deep_override(template, raw_results)

    def clean_previous_subtask_files(self) -> None:
        
        logger.info("Cleaning previous NLU/NLG subtask JSONL files...")
        for task_key_prefix in NLU_NLG_TASK_KEYS:
            for result_file in self.results_base_path.glob(f"*___{task_key_prefix}.json"):
                try:
                    task_data_content = result_file.read_text(encoding="utf-8")
                    if not task_data_content.strip():
                        logger.debug(f"Skipping empty result file for subtask cleaning: {result_file}")
                        continue
                    task_data = json.loads(task_data_content)

                    main_score_for_this_task_prefix = self.main_scores_map.get(task_key_prefix)

                    for subtask_name in task_data:
                        if subtask_name == main_score_for_this_task_prefix:
                            continue
                        if isinstance(task_data.get(subtask_name), dict):
                            subtask_output_path = self.output_path / f"{subtask_name}.jsonl"
                            if subtask_output_path.exists():
                                subtask_output_path.unlink()
                                logger.info(f"Deleted previous subtask file: {subtask_output_path}")
                except json.JSONDecodeError as e:
                    logger.warning(f"Failed to decode JSON for subtask cleaning from {result_file}: {e}")
                except Exception as e:
                    logger.warning(f"Failed to inspect/delete subtask files based on {result_file}: {e}")

    def _process_subtask_data(self, task_results: Dict[str, Any], base_model_info: Dict[str, Any], parent_task_main_score_key: Optional[str], parent_task_key_for_log: str) -> None:
        
        parent_task_main_score_value = task_results.get(parent_task_main_score_key) if parent_task_main_score_key else None

        for subtask_name, subtask_scores_dict in task_results.items():
            if subtask_name == parent_task_main_score_key:
                continue
            if not isinstance(subtask_scores_dict, dict):
                logger.debug(f"Skipping entry '{subtask_name}' in '{parent_task_key_for_log}': not a dictionary of subtask scores.")
                continue

            row_data = base_model_info.copy()
            row_data.update(subtask_scores_dict)

            if parent_task_main_score_key:
                row_data[parent_task_main_score_key] = parent_task_main_score_value

            subtask_output_file = f"{subtask_name}.jsonl"
            subtask_output_path = self.output_path / subtask_output_file

            try:
                current_entries = []
                if subtask_output_path.exists():
                    existing_df = pd.read_json(subtask_output_path, lines=True)
                    if not existing_df.empty and 'Model Name' in existing_df.columns:
                         current_entries = existing_df[existing_df['Model Name'] != row_data['Model Name']].to_dict(orient='records')

                current_entries.append(row_data)
                updated_df = pd.DataFrame(current_entries)
                updated_df.to_json(subtask_output_path, orient="records", lines=True, force_ascii=False)
                logger.debug(f"Updated subtask file: {subtask_output_path} for model {base_model_info.get('Model Name')}, parent task {parent_task_key_for_log}")
            except Exception as e:
                logger.error(f"Error updating subtask file {subtask_output_path} for parent {parent_task_key_for_log}: {e}")
    def process_nlu_nlg_subtasks(self, model_details: Dict[str, Any], model_folder_name: str, canonical_model_name: str) -> None:
        
        common_subtask_model_info = {
            "Model Name": canonical_model_name,
            "model_url": model_details.get('model_url', model_details.get('link', model_details.get('homepage', 'https://google.com'))),
            "parameters_count": str(model_details.get('n_parameters', "N/A")),
            "source_type": "Closed-Source" # Default, will be refined
        }
        parameters_count_raw = model_details.get('n_parameters', None)
        if parameters_count_raw is not None:
            is_open_source_candidate = False
            if isinstance(parameters_count_raw, (int, float)) and parameters_count_raw > 0:
                is_open_source_candidate = True
            elif isinstance(parameters_count_raw, str) and \
                    str(parameters_count_raw).strip().lower() not in ["", "n/a", "unknown", "private", "confidential", "tbd", "null", "closed"]:
                is_open_source_candidate = True
            common_subtask_model_info["source_type"] = "Open-Source" if is_open_source_candidate else "Closed-Source"

        for task_key_for_subtasks in NLU_NLG_TASK_KEYS:
            if task_key_for_subtasks not in self.tasks_config:
                logger.debug(f"Subtask processing for '{task_key_for_subtasks}' skipped: not in tasks_config.")
                continue

            logger.info(f"Processing subtasks for '{task_key_for_subtasks}' for model '{canonical_model_name}'...")
            parent_task_full_results = self.load_and_fill_task_results(model_folder_name, task_key_for_subtasks)
            main_score_key_for_parent_task = self.main_scores_map.get(task_key_for_subtasks)
            if not main_score_key_for_parent_task:
                logger.warning(f"No main score key in main_scores_map for parent task '{task_key_for_subtasks}'.")

            self._process_subtask_data(
                parent_task_full_results,
                common_subtask_model_info,
                main_score_key_for_parent_task,
                task_key_for_subtasks
            )
    def process_models(self) -> Dict[str, pd.DataFrame]:
        processed_task_data: Dict[str, List[Dict[str, Any]]] = {task_key: [] for task_key in self.tasks_config.keys()}
        all_models_summary_data: List[Dict[str, Any]] = []

        if not self.models_info_path.exists() or not self.models_info_path.is_dir():
            logger.critical(f"Configured MODELS_FOLDER path does not exist or is not a directory: {self.models_info_path}")
            empty_dfs = {key: pd.DataFrame() for key in self.tasks_config.keys()}
            empty_dfs["all"] = pd.DataFrame()
            return empty_dfs

        model_info_files = list(self.models_info_path.glob("*.json"))
        if not model_info_files:
            logger.warning(f"No model info files (*.json) found in {self.models_info_path}. No models will be processed.")
            empty_dfs = {key: pd.DataFrame() for key in self.tasks_config.keys()}
            empty_dfs["all"] = pd.DataFrame()
            return empty_dfs

        for model_info_file in model_info_files:
            model_folder_name = model_info_file.stem
            try:
                with open(model_info_file, 'r', encoding='utf-8') as f:
                    model_details = json.load(f)

                canonical_model_name = model_details.get('name_for_leaderboard',
                                      model_details.get('model_hf_id',
                                      model_details.get('name', model_folder_name)))
                model_url = model_details.get('model_url', model_details.get('link', model_details.get('homepage', 'https_google.com')))
                if not model_url: model_url = 'https_google.com'

                parameters_count_raw = model_details.get('n_parameters', None)
                parameters_count_display = str(parameters_count_raw) if parameters_count_raw is not None else "N/A"

                source_type = "Closed-Source"
                if parameters_count_raw is not None:
                    is_open_source_candidate = False
                    if isinstance(parameters_count_raw, (int, float)) and parameters_count_raw > 0:
                        is_open_source_candidate = True
                    elif isinstance(parameters_count_raw, str) and \
                         str(parameters_count_raw).strip().lower() not in ["", "n/a", "unknown", "private", "confidential", "tbd", "null", "closed"]:
                        is_open_source_candidate = True
                    source_type = "Open-Source" if is_open_source_candidate else "Closed-Source"

            except Exception as e:
                logger.error(f"Error loading/parsing model info from {model_info_file}: {e}. Skipping '{model_folder_name}'.")
                continue

            logger.info(f"Processing model: {canonical_model_name} (source ID: {model_folder_name})")

            current_model_scores_for_summary: Dict[str, Any] = {
                "Model Name": canonical_model_name,
                "model_url": model_url,
                "parameters_count": parameters_count_display,
                "source_type": source_type
            }

            for task_key, task_display_name in self.tasks_config.items():
                task_specific_results = self.load_and_fill_task_results(model_folder_name, task_key)
                main_score_metric_name = self.main_scores_map.get(task_key)
                task_data_entry_for_specific_jsonl: Dict[str, Any] = {
                    "Model Name": canonical_model_name,
                    "model_url": model_url,
                    "parameters_count": parameters_count_display,
                    "source_type": source_type
                }

                if isinstance(task_specific_results, dict) and task_specific_results:
                    for metric, value in task_specific_results.items():
                        task_data_entry_for_specific_jsonl[metric] = value

                    if main_score_metric_name and main_score_metric_name in task_specific_results:
                        score_value = task_specific_results[main_score_metric_name]
                        if task_key == "mt_bench" and score_value is not None:
                             try:
                                score_value = float(score_value) / 10.0
                             except (ValueError, TypeError):
                                logger.warning(f"Could not convert mt_bench score '{score_value}' to float for division for model {canonical_model_name}")
                                score_value = pd.NA
                        current_model_scores_for_summary[task_display_name] = score_value
                    elif main_score_metric_name:
                        logger.warning(f"Main score metric '{main_score_metric_name}' for task '{task_key}' (Display: {task_display_name}) not found for model '{canonical_model_name}'. Will be NA.")
                        current_model_scores_for_summary[task_display_name] = pd.NA
                        task_data_entry_for_specific_jsonl[main_score_metric_name] = pd.NA
                else:
                    logger.warning(f"No valid results data for model '{canonical_model_name}', task_key '{task_key}'. Scores will be NA.")
                    if main_score_metric_name:
                        task_data_entry_for_specific_jsonl[main_score_metric_name] = pd.NA
                    current_model_scores_for_summary[task_display_name] = pd.NA

                processed_task_data[task_key].append(task_data_entry_for_specific_jsonl)

            all_models_summary_data.append(current_model_scores_for_summary)
            self.process_nlu_nlg_subtasks(model_details, model_folder_name, canonical_model_name)

        final_dataframes: Dict[str, pd.DataFrame] = {}
        for task_key, data_list in processed_task_data.items():
            df = pd.DataFrame(data_list) if data_list else pd.DataFrame()
            main_score_col = self.main_scores_map.get(task_key)
            if not df.empty and main_score_col and main_score_col in df.columns:
                try:
                    df[main_score_col] = pd.to_numeric(df[main_score_col], errors='coerce')
                    # Sort by main score (NaNs will go last or first depending on na_position, default is last)
                    df = df.sort_values(by=main_score_col, ascending=False, na_position='last')
                except Exception as e:
                    logger.warning(f"Could not sort dataframe for task {task_key} by score {main_score_col}: {e}")
            final_dataframes[task_key] = df
            if df.empty:
                 logger.warning(f"No data processed for task '{task_key}'. Resulting DataFrame is empty.")

        if all_models_summary_data:
            all_df = pd.DataFrame(all_models_summary_data)
            score_cols_for_average = []
            for _, task_display_name_for_avg in self.tasks_config.items():
                if task_display_name_for_avg in all_df.columns:
                    numeric_col = pd.to_numeric(all_df[task_display_name_for_avg], errors='coerce')
                    if numeric_col.notna().any(): # Check if there is at least one non-NA numeric value
                        all_df[task_display_name_for_avg] = numeric_col
                        score_cols_for_average.append(task_display_name_for_avg)
                    else: # All values are NA or non-numeric
                        all_df[task_display_name_for_avg] = pd.NA # Ensure column is NA if not usable
                        logger.warning(f"Column '{task_display_name_for_avg}' for averaging in 'all' table is not numeric or all NaN. Excluding from average calculation and setting to NA.")
            if score_cols_for_average:
                try:
                    # Calculate mean; it will be NaN if any constituent score for a row is NaN.
                    all_df["Average"] = all_df[score_cols_for_average].mean(axis=1, skipna=False)
                    # Round only non-NaN averages
                    all_df.loc[all_df["Average"].notna(), "Average"] = all_df.loc[all_df["Average"].notna(), "Average"].round(4)
                except Exception as e:
                    logger.error(f"Error calculating 'Average' for 'all' table: {e}. Average column might be NA or incorrect.")
                    all_df["Average"] = pd.NA # Fallback to NA
            else:
                logger.warning("No valid numeric score columns found to calculate 'Average' for 'all' table.")
                all_df["Average"] = pd.NA # Assign pd.NA if no columns to average

            # Sort 'all' table by Average (NaNs will be placed last by default with ascending=False)
            if "Average" in all_df.columns: # Check if 'Average' column exists
                 # NaNs are typically sorted to the end by default when ascending=False or na_position='last'
                all_df = all_df.sort_values(by="Average", ascending=False, na_position='last')


            existing_cols_in_order = [col for col in ALL_LEADERBOARD_COLUMNS if col in all_df.columns]
            other_cols = [col for col in all_df.columns if col not in existing_cols_in_order]
            all_df = all_df[existing_cols_in_order + other_cols]

            final_dataframes["all"] = all_df
        else:
            final_dataframes["all"] = pd.DataFrame()
            logger.warning("No summary data collected for the 'all' table.")

        return final_dataframes

    def save_dataframe_as_jsonl(self, df: pd.DataFrame, filename_base: str) -> None:
        
        if df is None or df.empty:
            logger.warning(f"DataFrame for '{filename_base}.jsonl' is empty or None. Skipping save.")
            return
        output_file_path = self.output_path / f"{filename_base}.jsonl"
        try:
            df.to_json(output_file_path, orient="records", lines=True, force_ascii=False, index=False)
            logger.info(f"Saved data to {output_file_path}")
        except Exception as e:
            logger.error(f"Failed to save DataFrame to {output_file_path}: {e}")
    def run(self) -> None:
        
        logger.info("Starting data processing pipeline in ModelEvaluationProcessor...")
        self.clean_previous_subtask_files()
        processed_dataframes = self.process_models()
        for task_key_or_name, df in processed_dataframes.items():
            self.save_dataframe_as_jsonl(df, task_key_or_name)
        logger.info("Data processing pipeline completed successfully!")

def main() -> None:
    
    models_folder_to_use = DEFAULT_MODELS_FOLDER
    results_folder_to_use = DEFAULT_RESULTS_FOLDER
    template_folder_to_use = TEMPLATE_FOLDER

    logger.info(f"Refresh script running from: {SCRIPT_DIR}")
    logger.info(f"CONFIGURED Input 'models_info' Path: {models_folder_to_use}")
    logger.info(f"CONFIGURED Input 'results' Path: {results_folder_to_use}")
    logger.info(f"CONFIGURED Input 'template_jsons' Path: {template_folder_to_use}")
    logger.info(f"Outputting processed data to (inside 'leaderboard' dir): {OUTPUT_FOLDER}")
    logger.info(f"Using configuration file (inside 'leaderboard' dir): {CONFIG_FILE_PATH}")

    if not CONFIG_FILE_PATH.exists():
        logger.critical(f"CRITICAL: Config file not found at {CONFIG_FILE_PATH}. Ensure '{CONFIG_FILE_PATH.name}' exists in '{SCRIPT_DIR}'.")
        return
    if not models_folder_to_use.exists() or not models_folder_to_use.is_dir():
        logger.critical(f"CRITICAL: Input 'models_info' directory not found at {models_folder_to_use} or is not a directory.")
        return
    if not results_folder_to_use.exists() or not results_folder_to_use.is_dir():
        logger.critical(f"CRITICAL: Input 'results' directory not found at {results_folder_to_use} or is not a directory.")
        return
    if not template_folder_to_use.exists() or not template_folder_to_use.is_dir():
        logger.warning(f"WARNING: 'template_jsons' directory not found at {template_folder_to_use}. Template filling might not work as expected.")

    try:
        processor = ModelEvaluationProcessor(
            models_info_path=models_folder_to_use,
            results_base_path=results_folder_to_use,
            output_path=OUTPUT_FOLDER,
            template_jsons_path=template_folder_to_use,
        )
        processor.run()
    except Exception as e:
        logger.error(f"Unhandled exception in main: {e}", exc_info=True)

if __name__ == "__main__":
    main()