Spaces:
Runtime error
Runtime error
Paul Hager
commited on
Commit
·
5c1f78d
1
Parent(s):
adad63e
Adjusted to CDM orga and text. Removed submission
Browse files- app.py +108 -98
- src/about.py +59 -30
- src/envs.py +8 -6
app.py
CHANGED
|
@@ -22,7 +22,7 @@ from src.display.utils import (
|
|
| 22 |
ModelType,
|
| 23 |
fields,
|
| 24 |
WeightType,
|
| 25 |
-
Precision
|
| 26 |
)
|
| 27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
@@ -32,18 +32,29 @@ from src.submission.submit import add_new_eval
|
|
| 32 |
def restart_space():
|
| 33 |
API.restart_space(repo_id=REPO_ID)
|
| 34 |
|
|
|
|
| 35 |
### Space initialisation
|
| 36 |
try:
|
| 37 |
print(EVAL_REQUESTS_PATH)
|
| 38 |
snapshot_download(
|
| 39 |
-
repo_id=QUEUE_REPO,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
)
|
| 41 |
except Exception:
|
| 42 |
restart_space()
|
| 43 |
try:
|
| 44 |
print(EVAL_RESULTS_PATH)
|
| 45 |
snapshot_download(
|
| 46 |
-
repo_id=RESULTS_REPO,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
except Exception:
|
| 49 |
restart_space()
|
|
@@ -51,11 +62,12 @@ except Exception:
|
|
| 51 |
|
| 52 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 53 |
|
| 54 |
-
(
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
|
|
|
| 59 |
|
| 60 |
def init_leaderboard(dataframe):
|
| 61 |
if dataframe is None or dataframe.empty:
|
|
@@ -80,9 +92,7 @@ def init_leaderboard(dataframe):
|
|
| 80 |
max=150,
|
| 81 |
label="Select the number of parameters (B)",
|
| 82 |
),
|
| 83 |
-
ColumnFilter(
|
| 84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
| 85 |
-
),
|
| 86 |
],
|
| 87 |
bool_checkboxgroup_label="Hide models",
|
| 88 |
interactive=False,
|
|
@@ -101,92 +111,92 @@ with demo:
|
|
| 101 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 102 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 103 |
|
| 104 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
|
| 191 |
with gr.Row():
|
| 192 |
with gr.Accordion("📙 Citation", open=False):
|
|
@@ -201,4 +211,4 @@ with demo:
|
|
| 201 |
scheduler = BackgroundScheduler()
|
| 202 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 203 |
scheduler.start()
|
| 204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 22 |
ModelType,
|
| 23 |
fields,
|
| 24 |
WeightType,
|
| 25 |
+
Precision,
|
| 26 |
)
|
| 27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
|
| 32 |
def restart_space():
|
| 33 |
API.restart_space(repo_id=REPO_ID)
|
| 34 |
|
| 35 |
+
|
| 36 |
### Space initialisation
|
| 37 |
try:
|
| 38 |
print(EVAL_REQUESTS_PATH)
|
| 39 |
snapshot_download(
|
| 40 |
+
repo_id=QUEUE_REPO,
|
| 41 |
+
local_dir=EVAL_REQUESTS_PATH,
|
| 42 |
+
repo_type="dataset",
|
| 43 |
+
tqdm_class=None,
|
| 44 |
+
etag_timeout=30,
|
| 45 |
+
token=TOKEN,
|
| 46 |
)
|
| 47 |
except Exception:
|
| 48 |
restart_space()
|
| 49 |
try:
|
| 50 |
print(EVAL_RESULTS_PATH)
|
| 51 |
snapshot_download(
|
| 52 |
+
repo_id=RESULTS_REPO,
|
| 53 |
+
local_dir=EVAL_RESULTS_PATH,
|
| 54 |
+
repo_type="dataset",
|
| 55 |
+
tqdm_class=None,
|
| 56 |
+
etag_timeout=30,
|
| 57 |
+
token=TOKEN,
|
| 58 |
)
|
| 59 |
except Exception:
|
| 60 |
restart_space()
|
|
|
|
| 62 |
|
| 63 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 64 |
|
| 65 |
+
# (
|
| 66 |
+
# finished_eval_queue_df,
|
| 67 |
+
# running_eval_queue_df,
|
| 68 |
+
# pending_eval_queue_df,
|
| 69 |
+
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 70 |
+
|
| 71 |
|
| 72 |
def init_leaderboard(dataframe):
|
| 73 |
if dataframe is None or dataframe.empty:
|
|
|
|
| 92 |
max=150,
|
| 93 |
label="Select the number of parameters (B)",
|
| 94 |
),
|
| 95 |
+
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
|
|
|
|
|
|
|
| 96 |
],
|
| 97 |
bool_checkboxgroup_label="Hide models",
|
| 98 |
interactive=False,
|
|
|
|
| 111 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 112 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 113 |
|
| 114 |
+
# with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 115 |
+
# with gr.Column():
|
| 116 |
+
# with gr.Row():
|
| 117 |
+
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 118 |
+
|
| 119 |
+
# with gr.Column():
|
| 120 |
+
# with gr.Accordion(
|
| 121 |
+
# f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 122 |
+
# open=False,
|
| 123 |
+
# ):
|
| 124 |
+
# with gr.Row():
|
| 125 |
+
# finished_eval_table = gr.components.Dataframe(
|
| 126 |
+
# value=finished_eval_queue_df,
|
| 127 |
+
# headers=EVAL_COLS,
|
| 128 |
+
# datatype=EVAL_TYPES,
|
| 129 |
+
# row_count=5,
|
| 130 |
+
# )
|
| 131 |
+
# with gr.Accordion(
|
| 132 |
+
# f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 133 |
+
# open=False,
|
| 134 |
+
# ):
|
| 135 |
+
# with gr.Row():
|
| 136 |
+
# running_eval_table = gr.components.Dataframe(
|
| 137 |
+
# value=running_eval_queue_df,
|
| 138 |
+
# headers=EVAL_COLS,
|
| 139 |
+
# datatype=EVAL_TYPES,
|
| 140 |
+
# row_count=5,
|
| 141 |
+
# )
|
| 142 |
+
|
| 143 |
+
# with gr.Accordion(
|
| 144 |
+
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 145 |
+
# open=False,
|
| 146 |
+
# ):
|
| 147 |
+
# with gr.Row():
|
| 148 |
+
# pending_eval_table = gr.components.Dataframe(
|
| 149 |
+
# value=pending_eval_queue_df,
|
| 150 |
+
# headers=EVAL_COLS,
|
| 151 |
+
# datatype=EVAL_TYPES,
|
| 152 |
+
# row_count=5,
|
| 153 |
+
# )
|
| 154 |
+
# with gr.Row():
|
| 155 |
+
# gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 156 |
+
|
| 157 |
+
# with gr.Row():
|
| 158 |
+
# with gr.Column():
|
| 159 |
+
# model_name_textbox = gr.Textbox(label="Model name")
|
| 160 |
+
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 161 |
+
# model_type = gr.Dropdown(
|
| 162 |
+
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 163 |
+
# label="Model type",
|
| 164 |
+
# multiselect=False,
|
| 165 |
+
# value=None,
|
| 166 |
+
# interactive=True,
|
| 167 |
+
# )
|
| 168 |
+
|
| 169 |
+
# with gr.Column():
|
| 170 |
+
# precision = gr.Dropdown(
|
| 171 |
+
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
| 172 |
+
# label="Precision",
|
| 173 |
+
# multiselect=False,
|
| 174 |
+
# value="float16",
|
| 175 |
+
# interactive=True,
|
| 176 |
+
# )
|
| 177 |
+
# weight_type = gr.Dropdown(
|
| 178 |
+
# choices=[i.value.name for i in WeightType],
|
| 179 |
+
# label="Weights type",
|
| 180 |
+
# multiselect=False,
|
| 181 |
+
# value="Original",
|
| 182 |
+
# interactive=True,
|
| 183 |
+
# )
|
| 184 |
+
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 185 |
+
|
| 186 |
+
# submit_button = gr.Button("Submit Eval")
|
| 187 |
+
# submission_result = gr.Markdown()
|
| 188 |
+
# submit_button.click(
|
| 189 |
+
# add_new_eval,
|
| 190 |
+
# [
|
| 191 |
+
# model_name_textbox,
|
| 192 |
+
# base_model_name_textbox,
|
| 193 |
+
# revision_name_textbox,
|
| 194 |
+
# precision,
|
| 195 |
+
# weight_type,
|
| 196 |
+
# model_type,
|
| 197 |
+
# ],
|
| 198 |
+
# submission_result,
|
| 199 |
+
# )
|
| 200 |
|
| 201 |
with gr.Row():
|
| 202 |
with gr.Accordion("📙 Citation", open=False):
|
|
|
|
| 211 |
scheduler = BackgroundScheduler()
|
| 212 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 213 |
scheduler.start()
|
| 214 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/about.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
|
|
|
|
| 4 |
@dataclass
|
| 5 |
class Task:
|
| 6 |
benchmark: str
|
|
@@ -11,21 +12,30 @@ class Task:
|
|
| 11 |
# Select your tasks here
|
| 12 |
# ---------------------------------------------------
|
| 13 |
class Tasks(Enum):
|
| 14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
-
task0 = Task("
|
| 16 |
-
task1 = Task("
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Your leaderboard name
|
| 24 |
-
TITLE = """<h1 align="center" id="space-title">
|
| 25 |
|
| 26 |
# What does your leaderboard evaluate?
|
| 27 |
INTRODUCTION_TEXT = """
|
| 28 |
-
|
| 29 |
"""
|
| 30 |
|
| 31 |
# Which evaluations are you running? how can people reproduce what you have?
|
|
@@ -35,37 +45,56 @@ LLM_BENCHMARKS_TEXT = f"""
|
|
| 35 |
## Reproducibility
|
| 36 |
To reproduce our results, here is the commands you can run:
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
## Some good practices before submitting a model
|
| 42 |
|
| 43 |
-
### 1) Make sure you can load your model and tokenizer using AutoClasses:
|
| 44 |
-
```python
|
| 45 |
-
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 46 |
-
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
| 47 |
-
model = AutoModel.from_pretrained("your model name", revision=revision)
|
| 48 |
-
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
| 49 |
```
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
|
| 58 |
-
###
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 71 |
CITATION_BUTTON_TEXT = r"""
|
|
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
|
| 4 |
+
|
| 5 |
@dataclass
|
| 6 |
class Task:
|
| 7 |
benchmark: str
|
|
|
|
| 12 |
# Select your tasks here
|
| 13 |
# ---------------------------------------------------
|
| 14 |
class Tasks(Enum):
|
| 15 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 16 |
+
task0 = Task("MIMIC CDM Appendicitis", "acc", "CDM App")
|
| 17 |
+
task1 = Task("MIMIC CDM Cholecystitis", "acc", "CDM Cholec")
|
| 18 |
+
task2 = Task("MIMIC CDM Diverticulitis", "acc", "CDM Divert")
|
| 19 |
+
task3 = Task("MIMIC CDM Pancreatitis", "acc", "CDM Pancr")
|
| 20 |
+
task4 = Task("MIMIC CDM Mean", "acc", "CDM Mean")
|
| 21 |
|
| 22 |
+
task5 = Task("MIMIC CDM FI Appendicitis", "acc", "CDM FI App")
|
| 23 |
+
task6 = Task("MIMIC CDM FI Cholecystitis", "acc", "CDM FI Cholec")
|
| 24 |
+
task7 = Task("MIMIC CDM FI Diverticulitis", "acc", "CDM FI Divert")
|
| 25 |
+
task8 = Task("MIMIC CDM FI Pancreatitis", "acc", "CDM FI Pancr")
|
| 26 |
+
task9 = Task("MIMIC CDM FI Mean", "acc", "CDM FI Mean")
|
| 27 |
|
| 28 |
|
| 29 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
| 30 |
+
# ---------------------------------------------------
|
| 31 |
+
|
| 32 |
|
| 33 |
# Your leaderboard name
|
| 34 |
+
TITLE = """<h1 align="center" id="space-title">MIMIC Clinical Decision Making</h1>"""
|
| 35 |
|
| 36 |
# What does your leaderboard evaluate?
|
| 37 |
INTRODUCTION_TEXT = """
|
| 38 |
+
This leaderboard shows current scores of models on the MIMIC Clinical Decision Making (MIMIC-CDM) and MIMIC Clinical Decision Making Full Information (MIMIC-CDM-FI) datasets. The dataset can be found [here](https://physionet.org/content/mimic-iv-ext-cdm/). The code used to run the models can be found [here](https://github.com/paulhager/MIMIC-Clinical-Decision-Making-Framework).
|
| 39 |
"""
|
| 40 |
|
| 41 |
# Which evaluations are you running? how can people reproduce what you have?
|
|
|
|
| 45 |
## Reproducibility
|
| 46 |
To reproduce our results, here is the commands you can run:
|
| 47 |
|
| 48 |
+
For MIMIC-CDM, navigate to the MIMIC-Clinical-Decision-Making-Framework repository and execute:
|
| 49 |
+
|
| 50 |
+
```
|
| 51 |
+
python run.py pathology=appendicitis model=<YOUR_MODEL_NAME>
|
| 52 |
+
python run.py pathology=cholecystitis model=<YOUR_MODEL_NAME>
|
| 53 |
+
python run.py pathology=pancreatitis model=<YOUR_MODEL_NAME>
|
| 54 |
+
python run.py pathology=diverticulitis model=<YOUR_MODEL_NAME>
|
| 55 |
+
```
|
| 56 |
|
| 57 |
+
For MIMIC-CDM-FI, navigate to the MIMIC-Clinical-Decision-Making-Framework repository and execute:
|
|
|
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
```
|
| 60 |
+
python run_full_info.py pathology=appendicitis model=<YOUR_MODEL_NAME>
|
| 61 |
+
python run_full_info.py pathology=cholecystitis model=<YOUR_MODEL_NAME>
|
| 62 |
+
python run_full_info.py pathology=pancreatitis model=<YOUR_MODEL_NAME>
|
| 63 |
+
python run_full_info.py pathology=diverticulitis model=<YOUR_MODEL_NAME>
|
| 64 |
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
"""
|
| 68 |
|
| 69 |
+
# EVALUATION_QUEUE_TEXT = """
|
| 70 |
+
# ## Some good practices before submitting a model
|
| 71 |
|
| 72 |
+
# ### 1) Make sure you can load your model and tokenizer using AutoClasses:
|
| 73 |
+
# ```python
|
| 74 |
+
# from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 75 |
+
# config = AutoConfig.from_pretrained("your model name", revision=revision)
|
| 76 |
+
# model = AutoModel.from_pretrained("your model name", revision=revision)
|
| 77 |
+
# tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
| 78 |
+
# ```
|
| 79 |
+
# If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
| 80 |
|
| 81 |
+
# Note: make sure your model is public!
|
| 82 |
+
# Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
| 83 |
|
| 84 |
+
# ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
| 85 |
+
# It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
| 86 |
+
|
| 87 |
+
# ### 3) Make sure your model has an open license!
|
| 88 |
+
# This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
| 89 |
+
|
| 90 |
+
# ### 4) Fill up your model card
|
| 91 |
+
# When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
| 92 |
+
|
| 93 |
+
# ## In case of model failure
|
| 94 |
+
# If your model is displayed in the `FAILED` category, its execution stopped.
|
| 95 |
+
# Make sure you have followed the above steps first.
|
| 96 |
+
# If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
| 97 |
+
# """
|
| 98 |
|
| 99 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 100 |
CITATION_BUTTON_TEXT = r"""
|
src/envs.py
CHANGED
|
@@ -4,22 +4,24 @@ from huggingface_hub import HfApi
|
|
| 4 |
|
| 5 |
# Info to change for your repository
|
| 6 |
# ----------------------------------
|
| 7 |
-
TOKEN = os.environ.get("HF_TOKEN")
|
| 8 |
|
| 9 |
-
OWNER =
|
|
|
|
|
|
|
| 10 |
# ----------------------------------
|
| 11 |
|
| 12 |
REPO_ID = f"{OWNER}/leaderboard"
|
| 13 |
-
QUEUE_REPO = f"{OWNER}/requests"
|
| 14 |
RESULTS_REPO = f"{OWNER}/results"
|
| 15 |
|
| 16 |
# If you setup a cache later, just change HF_HOME
|
| 17 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
| 18 |
|
| 19 |
# Local caches
|
| 20 |
-
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
| 21 |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
| 22 |
-
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
| 23 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
| 24 |
|
| 25 |
API = HfApi(token=TOKEN)
|
|
|
|
| 4 |
|
| 5 |
# Info to change for your repository
|
| 6 |
# ----------------------------------
|
| 7 |
+
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
| 8 |
|
| 9 |
+
OWNER = (
|
| 10 |
+
"MIMIC-CDM" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
| 11 |
+
)
|
| 12 |
# ----------------------------------
|
| 13 |
|
| 14 |
REPO_ID = f"{OWNER}/leaderboard"
|
| 15 |
+
# QUEUE_REPO = f"{OWNER}/requests"
|
| 16 |
RESULTS_REPO = f"{OWNER}/results"
|
| 17 |
|
| 18 |
# If you setup a cache later, just change HF_HOME
|
| 19 |
+
CACHE_PATH = os.getenv("HF_HOME", ".")
|
| 20 |
|
| 21 |
# Local caches
|
| 22 |
+
# EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
| 23 |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
| 24 |
+
# EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
| 25 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
| 26 |
|
| 27 |
API = HfApi(token=TOKEN)
|