Spaces:
Runtime error
Runtime error
Nathan Habib
commited on
Commit
·
adb0416
1
Parent(s):
5491f2d
reformat files, put metadata in request files
Browse files- app.py +41 -22
- model_info_cache.pkl +2 -2
- requirements.txt +2 -1
- src/display_models/get_model_metadata.py +5 -86
- src/display_models/read_results.py +4 -4
- src/load_from_hub.py +5 -51
- src/rate_limiting.py +1 -1
app.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
import json
|
| 2 |
import os
|
|
|
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import pandas as pd
|
| 7 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 8 |
-
from huggingface_hub import HfApi
|
| 9 |
|
| 10 |
from src.assets.css_html_js import custom_css, get_window_url_params
|
| 11 |
from src.assets.text_content import (
|
|
@@ -26,7 +27,7 @@ from src.display_models.utils import (
|
|
| 26 |
styled_message,
|
| 27 |
styled_warning,
|
| 28 |
)
|
| 29 |
-
from src.load_from_hub import get_evaluation_queue_df, get_leaderboard_df, is_model_on_hub
|
| 30 |
from src.rate_limiting import user_submission_permission
|
| 31 |
|
| 32 |
pd.set_option("display.precision", 1)
|
|
@@ -82,32 +83,21 @@ BENCHMARK_COLS = [
|
|
| 82 |
]
|
| 83 |
]
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
)
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
PRIVATE_QUEUE_REPO,
|
| 93 |
-
PRIVATE_RESULTS_REPO,
|
| 94 |
-
EVAL_REQUESTS_PATH_PRIVATE,
|
| 95 |
-
EVAL_RESULTS_PATH_PRIVATE,
|
| 96 |
-
)
|
| 97 |
-
else:
|
| 98 |
-
eval_queue_private, eval_results_private = None, None
|
| 99 |
|
| 100 |
-
original_df = get_leaderboard_df(eval_results, eval_results_private, COLS, BENCHMARK_COLS)
|
| 101 |
models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard
|
| 102 |
-
|
| 103 |
to_be_dumped = f"models = {repr(models)}\n"
|
| 104 |
|
| 105 |
-
leaderboard_df = original_df.copy()
|
| 106 |
(
|
| 107 |
finished_eval_queue_df,
|
| 108 |
running_eval_queue_df,
|
| 109 |
pending_eval_queue_df,
|
| 110 |
-
) = get_evaluation_queue_df(
|
| 111 |
|
| 112 |
|
| 113 |
## INTERACTION FUNCTIONS
|
|
@@ -155,6 +145,27 @@ def add_new_eval(
|
|
| 155 |
if not model_on_hub:
|
| 156 |
return styled_error(f'Model "{model}" {error}')
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
# Were the model card and license filled?
|
| 159 |
modelcard_OK, error_msg = check_model_card(model)
|
| 160 |
if not modelcard_OK:
|
|
@@ -173,6 +184,9 @@ def add_new_eval(
|
|
| 173 |
"status": "PENDING",
|
| 174 |
"submitted_time": current_time,
|
| 175 |
"model_type": model_type,
|
|
|
|
|
|
|
|
|
|
| 176 |
}
|
| 177 |
|
| 178 |
user_name = ""
|
|
@@ -240,6 +254,7 @@ def update_table(
|
|
| 240 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 241 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 242 |
|
|
|
|
| 243 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 244 |
always_here_cols = [
|
| 245 |
AutoEvalColumn.model_type_symbol.name,
|
|
@@ -277,10 +292,13 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
| 277 |
final_df.append(temp_filtered_df)
|
| 278 |
if len(final_df) > 0:
|
| 279 |
filtered_df = pd.concat(final_df)
|
| 280 |
-
filtered_df = filtered_df.drop_duplicates(
|
|
|
|
|
|
|
| 281 |
|
| 282 |
return filtered_df
|
| 283 |
|
|
|
|
| 284 |
def filter_models(
|
| 285 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
| 286 |
) -> pd.DataFrame:
|
|
@@ -288,7 +306,7 @@ def filter_models(
|
|
| 288 |
if show_deleted:
|
| 289 |
filtered_df = df
|
| 290 |
else: # Show only still on the hub models
|
| 291 |
-
filtered_df = df[df[AutoEvalColumn.still_on_hub.name]
|
| 292 |
|
| 293 |
type_emoji = [t[0] for t in type_query]
|
| 294 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
|
@@ -599,7 +617,8 @@ with demo:
|
|
| 599 |
label=CITATION_BUTTON_LABEL,
|
| 600 |
lines=20,
|
| 601 |
elem_id="citation-button",
|
| 602 |
-
|
|
|
|
| 603 |
|
| 604 |
dummy = gr.Textbox(visible=False)
|
| 605 |
demo.load(
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
+
import re
|
| 4 |
from datetime import datetime, timezone
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import pandas as pd
|
| 8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 9 |
+
from huggingface_hub import HfApi, snapshot_download
|
| 10 |
|
| 11 |
from src.assets.css_html_js import custom_css, get_window_url_params
|
| 12 |
from src.assets.text_content import (
|
|
|
|
| 27 |
styled_message,
|
| 28 |
styled_warning,
|
| 29 |
)
|
| 30 |
+
from src.load_from_hub import get_all_requested_models, get_evaluation_queue_df, get_leaderboard_df, is_model_on_hub
|
| 31 |
from src.rate_limiting import user_submission_permission
|
| 32 |
|
| 33 |
pd.set_option("display.precision", 1)
|
|
|
|
| 83 |
]
|
| 84 |
]
|
| 85 |
|
| 86 |
+
snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None)
|
| 87 |
+
snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None)
|
| 88 |
+
requested_models, users_to_submission_dates = get_all_requested_models(EVAL_REQUESTS_PATH)
|
|
|
|
| 89 |
|
| 90 |
+
original_df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
|
| 91 |
+
leaderboard_df = original_df.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
|
|
|
| 93 |
models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard
|
|
|
|
| 94 |
to_be_dumped = f"models = {repr(models)}\n"
|
| 95 |
|
|
|
|
| 96 |
(
|
| 97 |
finished_eval_queue_df,
|
| 98 |
running_eval_queue_df,
|
| 99 |
pending_eval_queue_df,
|
| 100 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 101 |
|
| 102 |
|
| 103 |
## INTERACTION FUNCTIONS
|
|
|
|
| 145 |
if not model_on_hub:
|
| 146 |
return styled_error(f'Model "{model}" {error}')
|
| 147 |
|
| 148 |
+
model_info = api.model_info(repo_id=model, revision=revision)
|
| 149 |
+
|
| 150 |
+
size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
|
| 151 |
+
try:
|
| 152 |
+
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
| 153 |
+
except AttributeError:
|
| 154 |
+
try:
|
| 155 |
+
size_match = re.search(size_pattern, model.lower())
|
| 156 |
+
model_size = size_match.group(0)
|
| 157 |
+
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
|
| 158 |
+
except AttributeError:
|
| 159 |
+
return 65
|
| 160 |
+
|
| 161 |
+
size_factor = 8 if (precision == "GPTQ" or "GPTQ" in model) else 1
|
| 162 |
+
model_size = size_factor * model_size
|
| 163 |
+
|
| 164 |
+
try:
|
| 165 |
+
license = model_info.cardData["license"]
|
| 166 |
+
except Exception:
|
| 167 |
+
license = "?"
|
| 168 |
+
|
| 169 |
# Were the model card and license filled?
|
| 170 |
modelcard_OK, error_msg = check_model_card(model)
|
| 171 |
if not modelcard_OK:
|
|
|
|
| 184 |
"status": "PENDING",
|
| 185 |
"submitted_time": current_time,
|
| 186 |
"model_type": model_type,
|
| 187 |
+
"likes": model_info.likes,
|
| 188 |
+
"params": model_size,
|
| 189 |
+
"license": license,
|
| 190 |
}
|
| 191 |
|
| 192 |
user_name = ""
|
|
|
|
| 254 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 255 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 256 |
|
| 257 |
+
|
| 258 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 259 |
always_here_cols = [
|
| 260 |
AutoEvalColumn.model_type_symbol.name,
|
|
|
|
| 292 |
final_df.append(temp_filtered_df)
|
| 293 |
if len(final_df) > 0:
|
| 294 |
filtered_df = pd.concat(final_df)
|
| 295 |
+
filtered_df = filtered_df.drop_duplicates(
|
| 296 |
+
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
| 297 |
+
)
|
| 298 |
|
| 299 |
return filtered_df
|
| 300 |
|
| 301 |
+
|
| 302 |
def filter_models(
|
| 303 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
| 304 |
) -> pd.DataFrame:
|
|
|
|
| 306 |
if show_deleted:
|
| 307 |
filtered_df = df
|
| 308 |
else: # Show only still on the hub models
|
| 309 |
+
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] is True]
|
| 310 |
|
| 311 |
type_emoji = [t[0] for t in type_query]
|
| 312 |
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
|
|
|
| 617 |
label=CITATION_BUTTON_LABEL,
|
| 618 |
lines=20,
|
| 619 |
elem_id="citation-button",
|
| 620 |
+
show_copy_button=True,
|
| 621 |
+
)
|
| 622 |
|
| 623 |
dummy = gr.Textbox(visible=False)
|
| 624 |
demo.load(
|
model_info_cache.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:15ee9a3cdd3ffdfa4d46497b829fbb43ea5a66222a17d34dfef5ad1111a8eb18
|
| 3 |
+
size 3789941
|
requirements.txt
CHANGED
|
@@ -60,7 +60,7 @@ sniffio==1.3.0
|
|
| 60 |
starlette==0.26.1
|
| 61 |
toolz==0.12.0
|
| 62 |
tqdm==4.65.0
|
| 63 |
-
transformers
|
| 64 |
typing_extensions==4.5.0
|
| 65 |
tzdata==2023.3
|
| 66 |
tzlocal==4.3
|
|
@@ -69,3 +69,4 @@ urllib3==1.26.15
|
|
| 69 |
uvicorn==0.21.1
|
| 70 |
websockets==11.0.1
|
| 71 |
yarl==1.8.2
|
|
|
|
|
|
| 60 |
starlette==0.26.1
|
| 61 |
toolz==0.12.0
|
| 62 |
tqdm==4.65.0
|
| 63 |
+
transformers==4.34.0
|
| 64 |
typing_extensions==4.5.0
|
| 65 |
tzdata==2023.3
|
| 66 |
tzlocal==4.3
|
|
|
|
| 69 |
uvicorn==0.21.1
|
| 70 |
websockets==11.0.1
|
| 71 |
yarl==1.8.2
|
| 72 |
+
hf_transfer==0.1.3
|
src/display_models/get_model_metadata.py
CHANGED
|
@@ -1,15 +1,10 @@
|
|
| 1 |
import glob
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
-
import re
|
| 5 |
-
import pickle
|
| 6 |
from typing import List
|
| 7 |
|
| 8 |
-
import huggingface_hub
|
| 9 |
from huggingface_hub import HfApi
|
| 10 |
from tqdm import tqdm
|
| 11 |
-
from transformers import AutoModel, AutoConfig
|
| 12 |
-
from accelerate import init_empty_weights
|
| 13 |
|
| 14 |
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
|
| 15 |
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
|
|
@@ -18,86 +13,8 @@ from src.display_models.utils import AutoEvalColumn, model_hyperlink
|
|
| 18 |
api = HfApi(token=os.environ.get("H4_TOKEN", None))
|
| 19 |
|
| 20 |
|
| 21 |
-
def
|
| 22 |
-
# load cache from disk
|
| 23 |
-
try:
|
| 24 |
-
with open("model_info_cache.pkl", "rb") as f:
|
| 25 |
-
model_info_cache = pickle.load(f)
|
| 26 |
-
except (EOFError, FileNotFoundError):
|
| 27 |
-
model_info_cache = {}
|
| 28 |
-
try:
|
| 29 |
-
with open("model_size_cache.pkl", "rb") as f:
|
| 30 |
-
model_size_cache = pickle.load(f)
|
| 31 |
-
except (EOFError, FileNotFoundError):
|
| 32 |
-
model_size_cache = {}
|
| 33 |
-
|
| 34 |
for model_data in tqdm(leaderboard_data):
|
| 35 |
-
model_name = model_data["model_name_for_query"]
|
| 36 |
-
|
| 37 |
-
if model_name in model_info_cache:
|
| 38 |
-
model_info = model_info_cache[model_name]
|
| 39 |
-
else:
|
| 40 |
-
try:
|
| 41 |
-
model_info = api.model_info(model_name)
|
| 42 |
-
model_info_cache[model_name] = model_info
|
| 43 |
-
except (huggingface_hub.utils._errors.RepositoryNotFoundError, huggingface_hub.utils._errors.HfHubHTTPError):
|
| 44 |
-
print("Repo not found!", model_name)
|
| 45 |
-
model_data[AutoEvalColumn.license.name] = None
|
| 46 |
-
model_data[AutoEvalColumn.likes.name] = None
|
| 47 |
-
if model_name not in model_size_cache:
|
| 48 |
-
size_factor = 8 if model_data["Precision"] == "GPTQ" else 1
|
| 49 |
-
model_size_cache[model_name] = size_factor * get_model_size(model_name, None)
|
| 50 |
-
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
|
| 51 |
-
|
| 52 |
-
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
| 53 |
-
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
| 54 |
-
if model_name not in model_size_cache:
|
| 55 |
-
size_factor = 8 if model_data["Precision"] == "GPTQ" else 1
|
| 56 |
-
model_size_cache[model_name] = size_factor * get_model_size(model_name, model_info)
|
| 57 |
-
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name]
|
| 58 |
-
|
| 59 |
-
# save cache to disk in pickle format
|
| 60 |
-
with open("model_info_cache.pkl", "wb") as f:
|
| 61 |
-
pickle.dump(model_info_cache, f)
|
| 62 |
-
with open("model_size_cache.pkl", "wb") as f:
|
| 63 |
-
pickle.dump(model_size_cache, f)
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
def get_model_license(model_info):
|
| 67 |
-
try:
|
| 68 |
-
return model_info.cardData["license"]
|
| 69 |
-
except Exception:
|
| 70 |
-
return "?"
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
def get_model_likes(model_info):
|
| 74 |
-
return model_info.likes
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
def get_model_size(model_name, model_info):
|
| 81 |
-
# In billions
|
| 82 |
-
try:
|
| 83 |
-
return round(model_info.safetensors["total"] / 1e9, 3)
|
| 84 |
-
except AttributeError:
|
| 85 |
-
try:
|
| 86 |
-
config = AutoConfig.from_pretrained(model_name, trust_remote_code=False)
|
| 87 |
-
with init_empty_weights():
|
| 88 |
-
model = AutoModel.from_config(config, trust_remote_code=False)
|
| 89 |
-
return round(sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e9, 3)
|
| 90 |
-
except (EnvironmentError, ValueError, KeyError): # model config not found, likely private
|
| 91 |
-
try:
|
| 92 |
-
size_match = re.search(size_pattern, model_name.lower())
|
| 93 |
-
size = size_match.group(0)
|
| 94 |
-
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3)
|
| 95 |
-
except AttributeError:
|
| 96 |
-
return 0
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
def get_model_type(leaderboard_data: List[dict]):
|
| 100 |
-
for model_data in leaderboard_data:
|
| 101 |
request_files = os.path.join(
|
| 102 |
"eval-queue",
|
| 103 |
model_data["model_name_for_query"] + "_eval_request_*" + ".json",
|
|
@@ -125,6 +42,9 @@ def get_model_type(leaderboard_data: List[dict]):
|
|
| 125 |
model_type = model_type_from_str(request["model_type"])
|
| 126 |
model_data[AutoEvalColumn.model_type.name] = model_type.value.name
|
| 127 |
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol # + ("🔺" if is_delta else "")
|
|
|
|
|
|
|
|
|
|
| 128 |
except Exception:
|
| 129 |
if model_data["model_name_for_query"] in MODEL_TYPE_METADATA:
|
| 130 |
model_data[AutoEvalColumn.model_type.name] = MODEL_TYPE_METADATA[
|
|
@@ -164,6 +84,5 @@ def remove_forbidden_models(leaderboard_data: List[dict]):
|
|
| 164 |
|
| 165 |
def apply_metadata(leaderboard_data: List[dict]):
|
| 166 |
leaderboard_data = remove_forbidden_models(leaderboard_data)
|
| 167 |
-
|
| 168 |
-
get_model_infos_from_hub(leaderboard_data)
|
| 169 |
flag_models(leaderboard_data)
|
|
|
|
| 1 |
import glob
|
| 2 |
import json
|
| 3 |
import os
|
|
|
|
|
|
|
| 4 |
from typing import List
|
| 5 |
|
|
|
|
| 6 |
from huggingface_hub import HfApi
|
| 7 |
from tqdm import tqdm
|
|
|
|
|
|
|
| 8 |
|
| 9 |
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS
|
| 10 |
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str
|
|
|
|
| 13 |
api = HfApi(token=os.environ.get("H4_TOKEN", None))
|
| 14 |
|
| 15 |
|
| 16 |
+
def get_model_metadata(leaderboard_data: List[dict]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
for model_data in tqdm(leaderboard_data):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
request_files = os.path.join(
|
| 19 |
"eval-queue",
|
| 20 |
model_data["model_name_for_query"] + "_eval_request_*" + ".json",
|
|
|
|
| 42 |
model_type = model_type_from_str(request["model_type"])
|
| 43 |
model_data[AutoEvalColumn.model_type.name] = model_type.value.name
|
| 44 |
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol # + ("🔺" if is_delta else "")
|
| 45 |
+
model_data[AutoEvalColumn.license.name] = request["license"]
|
| 46 |
+
model_data[AutoEvalColumn.likes.name] = request["likes"]
|
| 47 |
+
model_data[AutoEvalColumn.params.name] = request["params"]
|
| 48 |
except Exception:
|
| 49 |
if model_data["model_name_for_query"] in MODEL_TYPE_METADATA:
|
| 50 |
model_data[AutoEvalColumn.model_type.name] = MODEL_TYPE_METADATA[
|
|
|
|
| 84 |
|
| 85 |
def apply_metadata(leaderboard_data: List[dict]):
|
| 86 |
leaderboard_data = remove_forbidden_models(leaderboard_data)
|
| 87 |
+
get_model_metadata(leaderboard_data)
|
|
|
|
| 88 |
flag_models(leaderboard_data)
|
src/display_models/read_results.py
CHANGED
|
@@ -116,10 +116,10 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, list[dict]]:
|
|
| 116 |
return result_key, eval_results
|
| 117 |
|
| 118 |
|
| 119 |
-
def get_eval_results() -> List[EvalResult]:
|
| 120 |
json_filepaths = []
|
| 121 |
|
| 122 |
-
for root, dir, files in os.walk(
|
| 123 |
# We should only have json files in model results
|
| 124 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
| 125 |
continue
|
|
@@ -149,7 +149,7 @@ def get_eval_results() -> List[EvalResult]:
|
|
| 149 |
return eval_results
|
| 150 |
|
| 151 |
|
| 152 |
-
def get_eval_results_dicts() -> List[Dict]:
|
| 153 |
-
eval_results = get_eval_results()
|
| 154 |
|
| 155 |
return [e.to_dict() for e in eval_results]
|
|
|
|
| 116 |
return result_key, eval_results
|
| 117 |
|
| 118 |
|
| 119 |
+
def get_eval_results(results_path: str) -> List[EvalResult]:
|
| 120 |
json_filepaths = []
|
| 121 |
|
| 122 |
+
for root, dir, files in os.walk(results_path):
|
| 123 |
# We should only have json files in model results
|
| 124 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
| 125 |
continue
|
|
|
|
| 149 |
return eval_results
|
| 150 |
|
| 151 |
|
| 152 |
+
def get_eval_results_dicts(results_path: str) -> List[Dict]:
|
| 153 |
+
eval_results = get_eval_results(results_path)
|
| 154 |
|
| 155 |
return [e.to_dict() for e in eval_results]
|
src/load_from_hub.py
CHANGED
|
@@ -1,10 +1,9 @@
|
|
| 1 |
import json
|
| 2 |
import os
|
|
|
|
| 3 |
|
| 4 |
import pandas as pd
|
| 5 |
-
from huggingface_hub import Repository
|
| 6 |
from transformers import AutoConfig
|
| 7 |
-
from collections import defaultdict
|
| 8 |
|
| 9 |
from src.assets.hardcoded_evals import baseline, gpt4_values, gpt35_values
|
| 10 |
from src.display_models.get_model_metadata import apply_metadata
|
|
@@ -38,43 +37,8 @@ def get_all_requested_models(requested_models_dir: str) -> set[str]:
|
|
| 38 |
return set(file_names), users_to_submission_dates
|
| 39 |
|
| 40 |
|
| 41 |
-
def
|
| 42 |
-
|
| 43 |
-
eval_results_repo = None
|
| 44 |
-
requested_models = None
|
| 45 |
-
|
| 46 |
-
print("Pulling evaluation requests and results.")
|
| 47 |
-
|
| 48 |
-
eval_queue_repo = Repository(
|
| 49 |
-
local_dir=QUEUE_PATH,
|
| 50 |
-
clone_from=QUEUE_REPO,
|
| 51 |
-
repo_type="dataset",
|
| 52 |
-
)
|
| 53 |
-
eval_queue_repo.git_pull()
|
| 54 |
-
|
| 55 |
-
eval_results_repo = Repository(
|
| 56 |
-
local_dir=RESULTS_PATH,
|
| 57 |
-
clone_from=RESULTS_REPO,
|
| 58 |
-
repo_type="dataset",
|
| 59 |
-
)
|
| 60 |
-
eval_results_repo.git_pull()
|
| 61 |
-
|
| 62 |
-
requested_models, users_to_submission_dates = get_all_requested_models("eval-queue")
|
| 63 |
-
|
| 64 |
-
return eval_queue_repo, requested_models, eval_results_repo, users_to_submission_dates
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
def get_leaderboard_df(
|
| 68 |
-
eval_results: Repository, eval_results_private: Repository, cols: list, benchmark_cols: list
|
| 69 |
-
) -> pd.DataFrame:
|
| 70 |
-
if eval_results:
|
| 71 |
-
print("Pulling evaluation results for the leaderboard.")
|
| 72 |
-
eval_results.git_pull()
|
| 73 |
-
if eval_results_private:
|
| 74 |
-
print("Pulling evaluation results for the leaderboard.")
|
| 75 |
-
eval_results_private.git_pull()
|
| 76 |
-
|
| 77 |
-
all_data = get_eval_results_dicts()
|
| 78 |
|
| 79 |
if not IS_PUBLIC:
|
| 80 |
all_data.append(gpt4_values)
|
|
@@ -92,16 +56,7 @@ def get_leaderboard_df(
|
|
| 92 |
return df
|
| 93 |
|
| 94 |
|
| 95 |
-
def get_evaluation_queue_df(
|
| 96 |
-
eval_queue: Repository, eval_queue_private: Repository, save_path: str, cols: list
|
| 97 |
-
) -> list[pd.DataFrame]:
|
| 98 |
-
if eval_queue:
|
| 99 |
-
print("Pulling changes for the evaluation queue.")
|
| 100 |
-
eval_queue.git_pull()
|
| 101 |
-
if eval_queue_private:
|
| 102 |
-
print("Pulling changes for the evaluation queue.")
|
| 103 |
-
eval_queue_private.git_pull()
|
| 104 |
-
|
| 105 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
| 106 |
all_evals = []
|
| 107 |
|
|
@@ -147,6 +102,5 @@ def is_model_on_hub(model_name: str, revision: str) -> bool:
|
|
| 147 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
| 148 |
)
|
| 149 |
|
| 150 |
-
except Exception
|
| 151 |
-
print(f"Could not get the model config from the hub.: {e}")
|
| 152 |
return False, "was not found on hub!"
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
+
from collections import defaultdict
|
| 4 |
|
| 5 |
import pandas as pd
|
|
|
|
| 6 |
from transformers import AutoConfig
|
|
|
|
| 7 |
|
| 8 |
from src.assets.hardcoded_evals import baseline, gpt4_values, gpt35_values
|
| 9 |
from src.display_models.get_model_metadata import apply_metadata
|
|
|
|
| 37 |
return set(file_names), users_to_submission_dates
|
| 38 |
|
| 39 |
|
| 40 |
+
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
| 41 |
+
all_data = get_eval_results_dicts(results_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
if not IS_PUBLIC:
|
| 44 |
all_data.append(gpt4_values)
|
|
|
|
| 56 |
return df
|
| 57 |
|
| 58 |
|
| 59 |
+
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
| 61 |
all_evals = []
|
| 62 |
|
|
|
|
| 102 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
| 103 |
)
|
| 104 |
|
| 105 |
+
except Exception:
|
|
|
|
| 106 |
return False, "was not found on hub!"
|
src/rate_limiting.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from datetime import datetime,
|
| 2 |
|
| 3 |
|
| 4 |
def user_submission_permission(submission_name, users_to_submission_dates, rate_limit_period):
|
|
|
|
| 1 |
+
from datetime import datetime, timedelta, timezone
|
| 2 |
|
| 3 |
|
| 4 |
def user_submission_permission(submission_name, users_to_submission_dates, rate_limit_period):
|