Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,50 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model & tokenizer
|
6 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
7 |
+
print("Loading model...")
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
print("Model loaded.")
|
11 |
+
|
12 |
+
# Global state
|
13 |
+
chat_history_ids = None
|
14 |
+
chat_step = 0
|
15 |
+
|
16 |
+
# Chat function
|
17 |
+
def respond(message, history=[]):
|
18 |
+
global chat_history_ids, chat_step
|
19 |
+
|
20 |
+
# Encode user input
|
21 |
+
new_input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors="pt")
|
22 |
+
|
23 |
+
# Append to chat history
|
24 |
+
bot_input_ids = (
|
25 |
+
torch.cat([chat_history_ids, new_input_ids], dim=-1)
|
26 |
+
if chat_step > 0 else new_input_ids
|
27 |
+
)
|
28 |
+
|
29 |
+
# Generate response
|
30 |
+
chat_history_ids = model.generate(
|
31 |
+
bot_input_ids,
|
32 |
+
max_new_tokens=500,
|
33 |
+
pad_token_id=tokenizer.eos_token_id,
|
34 |
+
do_sample=True,
|
35 |
+
top_k=50,
|
36 |
+
top_p=0.95,
|
37 |
+
temperature=0.8,
|
38 |
+
)
|
39 |
+
|
40 |
+
# Decode only the newly generated part
|
41 |
+
reply = tokenizer.decode(
|
42 |
+
chat_history_ids[:, bot_input_ids.shape[-1]:][0],
|
43 |
+
skip_special_tokens=True
|
44 |
+
)
|
45 |
+
|
46 |
+
chat_step += 1
|
47 |
+
return reply
|
48 |
+
|
49 |
+
# Launch Gradio interface
|
50 |
+
gr.ChatInterface(fn=respond, title="🧠 SmolLM Chatbot").launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|