MINEOGO commited on
Commit
16b39b1
·
verified ·
1 Parent(s): f6fb288

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -63
app.py CHANGED
@@ -1,64 +1,50 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+
5
+ # Load model & tokenizer
6
+ model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
7
+ print("Loading model...")
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForCausalLM.from_pretrained(model_name)
10
+ print("Model loaded.")
11
+
12
+ # Global state
13
+ chat_history_ids = None
14
+ chat_step = 0
15
+
16
+ # Chat function
17
+ def respond(message, history=[]):
18
+ global chat_history_ids, chat_step
19
+
20
+ # Encode user input
21
+ new_input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors="pt")
22
+
23
+ # Append to chat history
24
+ bot_input_ids = (
25
+ torch.cat([chat_history_ids, new_input_ids], dim=-1)
26
+ if chat_step > 0 else new_input_ids
27
+ )
28
+
29
+ # Generate response
30
+ chat_history_ids = model.generate(
31
+ bot_input_ids,
32
+ max_new_tokens=500,
33
+ pad_token_id=tokenizer.eos_token_id,
34
+ do_sample=True,
35
+ top_k=50,
36
+ top_p=0.95,
37
+ temperature=0.8,
38
+ )
39
+
40
+ # Decode only the newly generated part
41
+ reply = tokenizer.decode(
42
+ chat_history_ids[:, bot_input_ids.shape[-1]:][0],
43
+ skip_special_tokens=True
44
+ )
45
+
46
+ chat_step += 1
47
+ return reply
48
+
49
+ # Launch Gradio interface
50
+ gr.ChatInterface(fn=respond, title="🧠 SmolLM Chatbot").launch(share=True)