Spaces:
Running
Running
File size: 4,946 Bytes
aa6f369 8531a26 aa6f369 f5044d7 aa6f369 4d76afc 8531a26 aa6f369 4d76afc 338b431 b647320 8941b06 338b431 38f5ac1 338b431 4d76afc 338b431 4d76afc 338b431 8531a26 4d76afc aa6f369 8531a26 aa6f369 4d76afc 8531a26 338b431 38f5ac1 338b431 4d76afc aa6f369 f5a64b7 aa6f369 b647320 aa6f369 8531a26 b647320 338b431 e8a0246 aa6f369 38f5ac1 338b431 4d76afc 8531a26 338b431 4d76afc aa6f369 338b431 8531a26 4d76afc aa6f369 338b431 e3eee09 8531a26 338b431 e3eee09 aa6f369 4d76afc 8531a26 338b431 6541c57 f5a64b7 aa6f369 4d76afc 338b431 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import re
API_TOKEN = os.getenv("HF_TOKEN", None)
MODEL = "Qwen/Qwen3-32B"
try:
print(f"Initializing Inference Client for model: {MODEL}")
client = InferenceClient(model=MODEL, token=API_TOKEN) if API_TOKEN else InferenceClient(model=MODEL)
except Exception as e:
raise gr.Error(f"Failed to initialize model client for {MODEL}. Error: {e}. Check HF_TOKEN and model availability.")
# Parse all ```filename.ext\n<code>``` blocks
def parse_code_blocks(response: str) -> list:
pattern = r"```([^\n]+)\n(.*?)```"
blocks = re.findall(pattern, response, re.DOTALL)
files = []
for filename, code in blocks:
lang = None
if filename.endswith(".py"):
lang = "python"
elif filename.endswith(".js"):
lang = "javascript"
elif filename.endswith(".html"):
lang = "html"
elif filename.endswith(".css"):
lang = "css"
files.append({
"filename": filename.strip(),
"language": lang,
"code": code.strip()
})
return files
def strip_think_tags(text: str) -> str:
return re.sub(r"<think>.*?</think>", "", text, flags=re.DOTALL)
def extract_thoughts(text: str) -> str:
matches = re.findall(r"<think>(.*?)</think>", text, flags=re.DOTALL)
return "\n".join(matches).strip()
system_message = (
"You are an AI that generates website code using markdown-style code blocks. "
"Each file should be output as: ```filename.ext\\n<code>\\n``` with no explanation."
)
def generate_code(prompt, backend_choice, max_tokens, temperature, top_p):
user_prompt = f"USER_PROMPT = {prompt}\nUSER_BACKEND = {backend_choice}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_prompt}
]
full_response = ""
current_thoughts = ""
# Reset outputs: code file tabs and thinking box
yield [], gr.update(visible=True, value="")
try:
stream = client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
)
for message in stream:
token = message.choices[0].delta.content
if isinstance(token, str):
full_response += token
# Extract thinking chunks and show them
thoughts = extract_thoughts(full_response)
if thoughts != current_thoughts:
current_thoughts = thoughts
yield gr.update(visible=True, value=current_thoughts)
cleaned = strip_think_tags(full_response)
files = parse_code_blocks(cleaned)
updates = []
for f in files:
updates.append(gr.Code(value=f["code"], label=f["filename"], language=f["language"]))
yield updates, gr.update(visible=True, value=current_thoughts)
# Final clean state
cleaned = strip_think_tags(full_response)
files = parse_code_blocks(cleaned)
final_updates = [gr.Code(value=f["code"], label=f["filename"], language=f["language"]) for f in files]
yield final_updates, gr.update(visible=False)
except Exception as e:
print(f"ERROR during code generation stream: {e}")
yield [gr.Markdown(f"**Error:** {e}")], gr.update(visible=False)
with gr.Blocks(css=".gradio-container { max-width: 90% !important; }") as demo:
gr.Markdown("# ✨ Website Code Generator ✨")
gr.Markdown("Describe the website you want. Multiple file tabs will be created automatically.")
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Website Description", lines=6)
backend_radio = gr.Radio(["Static", "Flask", "Node.js"], label="Backend Context", value="Static")
generate_button = gr.Button("✨ Generate Website Code", variant="primary")
with gr.Column(scale=3):
file_outputs = gr.Group(update=lambda: [])
thinking_box = gr.Textbox(label="Model is thinking...", visible=False, interactive=False)
with gr.Accordion("Advanced Settings", open=False):
max_tokens_slider = gr.Slider(512, 4096, value=3072, step=256, label="Max New Tokens")
temperature_slider = gr.Slider(0.1, 1.2, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
generate_button.click(
fn=generate_code,
inputs=[prompt_input, backend_radio, max_tokens_slider, temperature_slider, top_p_slider],
outputs=[file_outputs, thinking_box],
)
if __name__ == "__main__":
if not API_TOKEN:
print("Warning: HF_TOKEN environment variable not set. Using anonymous access.")
demo.queue().launch() |