| import gradio as gr | |
| import torch | |
| import requests | |
| from torchvision import transforms | |
| model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval() | |
| response = requests.get("https://git.io/JJkYN") | |
| labels = response.text.split("\n") | |
| def predict(inp): | |
| inp = transforms.ToTensor()(inp).unsqueeze(0) | |
| with torch.no_grad(): | |
| prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) | |
| confidences = {labels[i]: float(prediction[i]) for i in range(1000)} | |
| return confidences | |
| def run(): | |
| demo = gr.Interface( | |
| fn=predict, | |
| inputs=gr.inputs.Image(type="pil"), | |
| outputs=gr.outputs.Label(num_top_classes=3), | |
| ) | |
| demo.launch(server_name="0.0.0.0", server_port=7860) | |
| if __name__ == "__main__": | |
| run() |