Spaces:
No application file
No application file
Update app (3).py
Browse files- app (3).py +9 -8
app (3).py
CHANGED
@@ -31,15 +31,7 @@ from torchvision.transforms.functional import to_pil_image
|
|
31 |
|
32 |
|
33 |
|
34 |
-
zero = torch.Tensor([0]).cuda()
|
35 |
-
print(zero.device) # <-- 'cpu' π€
|
36 |
|
37 |
-
@spaces.GPU
|
38 |
-
def greet(n):
|
39 |
-
print(zero.device) # <-- 'cuda:0' π€
|
40 |
-
return f"Hello {zero + n} Tensor"
|
41 |
-
|
42 |
-
|
43 |
def pil_to_binary_mask(pil_image, threshold=0):
|
44 |
np_image = np.array(pil_image)
|
45 |
grayscale_image = Image.fromarray(np_image).convert("L")
|
@@ -135,7 +127,16 @@ pipe = TryonPipeline.from_pretrained(
|
|
135 |
)
|
136 |
pipe.unet_encoder = UNet_Encoder
|
137 |
|
|
|
|
|
|
|
138 |
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
|
140 |
device = "cuda"
|
141 |
|
|
|
31 |
|
32 |
|
33 |
|
|
|
|
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
def pil_to_binary_mask(pil_image, threshold=0):
|
36 |
np_image = np.array(pil_image)
|
37 |
grayscale_image = Image.fromarray(np_image).convert("L")
|
|
|
127 |
)
|
128 |
pipe.unet_encoder = UNet_Encoder
|
129 |
|
130 |
+
zero = torch.Tensor([0]).cuda()
|
131 |
+
print(zero.device) # <-- 'cpu' π€
|
132 |
+
|
133 |
@spaces.GPU
|
134 |
+
def greet(n):
|
135 |
+
print(zero.device) # <-- 'cuda:0' π€
|
136 |
+
# return f"Hello {zero + n} Tensor"
|
137 |
+
|
138 |
+
|
139 |
+
# @spaces.GPU
|
140 |
def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
|
141 |
device = "cuda"
|
142 |
|